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We construct a gravity dual for charge density waves (CDWs) in which the translational symmetry along
one spatial direction is spontaneously broken. Our linear perturbation calculation on the gravity side
produces the frequency dependence of the optical conductivity, which exhibits the two familiar features of
CDWs, namely, the pinned collective mode and gapped single-particle excitation. These two features
indicate that our gravity dual also provides a new mechanism to implement the metal to insulator phase
transition by CDWs, which is further confirmed by the fact that dc conductivity decreases with the
decreased temperature below the critical temperature.
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Introduction.—In recent years, the holographic corre-
spondence between a gravitational theory and a quantum
field theory in condensed-matter physics has been exten-
sively investigated. In particular, inspired by the seminal
work in Refs. [1,2], more and more evidence has been
accumulated in favor of the consensus that many phenom-
ena related to strongly coupled systems may have a dual
description on the gravity side. In this Letter, we shall offer
a holographic mechanism to implement the metal-insulator
phase transition by charge density waves (CDWs).
A CDW is a novel ground state of the coupled electron-

phonon system, which is characterized by a collective
mode formed by electron-hole pairs with a wave vector
q ¼ 2kF and a gap in the single-particle excitation spec-
trum [3]. Ideally, this collective mode would sit at zero
frequency, leading to a supercurrent. But because of the
inevitable interaction between a CDW and the underlying
background, this collective mode is generically shifted to a
finite resonance frequency. This pinning effect together
with the gapped single-particle excitation suggests a
mechanism to induce a metal-insulator phase transition
by CDW. With this in mind, it is highly possible to provide
a holographic realization of a metal-insulator transition
once a holographic CDW is implemented.
It should be stressed that the generation of CDWs in

condensed matter corresponds to the spontaneous breaking
of translational symmetry. Therefore, to implement a
holographic description of CDWs, it is essential to intro-
duce some mechanism of the modulated instability of the
bulk geometry, which is usually of spatial homogeneity.
This issue has been addressed recently, and the examples of
spatially modulated unstable modes have been presented

[4–16]. However, until now a study on the dynamics of
CDWs by holography has been absent. Thus, it is unclear
not only whether such holographic CDWs reproduce the
observed fundamental features of ordinary CDWs in
experiments but also whether the corresponding CDW
phase transition is accompanied by the metal-insulator
transition. We shall make a first attempt to address these
issues and provide an affirmative answer to both of these
questions by investigating the optical conductivity of
holographic CDWs in a striped black hole background.
Holographic setup and background solutions.—Our

model consists of gravity coupled with two gauge fields
plus a dilaton field in four dimensions
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where F ¼ dA, G ¼ dB, tðΦÞ ¼ 1 − ðβ=2ÞL2Φ2, and
uðΦÞ ¼ ðγ= ffiffiffi

2
p ÞLΦ. The first gauge field A is introduced

to form an AdS–Reissner-Nordström (AdS-RN) black hole
background with finite temperature and nonvanishing
chemical potential, while the second gauge field B as well
as the dilaton field will be responsible for the instability of
the background, and the CDW phase will be associated
with this second Uð1Þ symmetry [16]. Below, we shall
set the AdS radius l2 ¼ 6L2 ¼ 1

4
and m2 ¼ −ð2=l2Þ ¼ −8.

In addition, l2=2κ2 ≫ 1 is required such that classical
gravity is reliable, which corresponds to the large N limit
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of the dual field theory. Thus, in our setup, the remaining
adjustable parameters are β and γ.
Obviously, in the case ofΦ ¼ 0 and B ¼ 0, the equations

of motion always allow the electric AdS-RN black hole
solution

ds2¼ 1

z2

�
−ð1−zÞfðzÞdt2þ dz2

ð1−zÞfðzÞþdx2þdy2
�

ð2Þ

with

fðzÞ ¼ 4

�
1þ zþ z2 −

z3μ2

16

�
; At ¼ μð1 − zÞ: ð3Þ

We will consider the dual field theory in a grand canonical
system; hence, we will use the chemical potential μ as the
unit for the system. In this coordinate system, the black
hole horizon is located at z ¼ 1 and the AdS4 boundary is at
z ¼ 0. The Hawking temperature of the black hole
is T=μ ¼ ð48 − μ2Þ=ð16πμÞ. The zero temperature limit
is reached when μ ¼ 4

ffiffiffi
3

p
. However, the linear perturbation

analysis shows that at low temperature such a black hole
will be unstable against the striped phase [16]. To obtain
such a resultant striped solution by solving the fully
nonlinear bulk dynamics numerically, we assume the
following ansatz for the background fields

ds2 ¼ 1

z2

�
−ð1 − zÞfðzÞQdt2 þ Sdz2

ð1 − zÞfðzÞ þ Vdy2

þ Tðdxþ z2UdzÞ2
�
;

A ¼ μð1 − zÞψdt;
B ¼ ð1 − zÞχdt;
Φ ¼ zϕ; ð4Þ

where the eight variables involved in the ansatz are
functions of x and z. In order to have a spontaneous
breaking of the translational symmetry in the dual field
theory, the following Dirichlet boundary conditions are
imposed:

Q½x; 0� ¼ S½x; 0� ¼ T½x; 0� ¼ V½x; 0� ¼ ψ ½x; 0� ¼ 1;

U½x; 0� ¼ χ½x; 0� ¼ ϕ½x; 0� ¼ 0: ð5Þ

Furthermore, we impose the regularity conditions at the
horizon such that all the functions have a Taylor expansion
in powers of (1 − z). Now the equations of motion reduce to
eight partial differential equations with respect to x and z.
We solve them numerically with the Einstein-DeTurck
method, which has been employed to look for static
solutions to Einstein equations [17–22]. We demonstrate
the relevant result below, where we focus solely on the case
of β ¼ −138 and γ ¼ 17.1.

The corresponding critical temperature for the phase
transition to the striped phase is about Tc ¼ 0.078μ, and the
critical momentum mode in the x direction is given by
kc ¼ 0.325μ. The onset of CDW can be read off explicitly
from the component of the gauge field Bt [23]

Bt ¼ −ρðxÞzþOðz2Þ;
ρðxÞ ¼ ρ0 þ ρ1 cos½kcx� þ � � � þ ρn cos½nkcx� þ � � � : ð6Þ

We find that the coefficients of even orders in numerical
solutions vanishes, such that the charge density for CDWs
has the form ρðxÞ ¼ ρ1 cos½kcx� þ ρ3 cos½3kcx� þ � � �. As
shown in Fig. 1, ρ1 can serve as the order parameter of our
system to characterize the phase transition to CDW, as
should be the case. Its condensation behavior near the
critical temperature indicates that the system undergoes a
second-order phase transition to CDW. In Fig. 2 we have
plotted the charge density associated with ρ1 and ρ3 at
various temperatures. From this figure, we notice that near
the critical temperature the subleading term ρ3 is tiny
compared with the leading term ρ1 and can be neglected,
while as the temperature goes down, its contribution
becomes important.
In Fig. 3 we plot the solutions of the scalar ϕ and the time

component of the gauge field χ at the temperature
T ¼ 0.8Tc. Note that the striped profile increases when
one goes deeper into the horizon, which is consistent with
the linear perturbation analysis that such a striped phase is
triggered by the instability of near-horizon geometry
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FIG. 1 (color online). The first mode of CDW as a function of
temperature.
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FIG. 2 (color online). The first and third modes of CDW for
T=Tc ¼ 0.6, 0.8, 0.95, 0.98 from top to bottom.

PRL 113, 091602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

091602-2



AdS2 × R2 of an extremal AdS-RN black hole [16]. With
this relevant striped deformation, the IR metallic fixed point
characterized by AdS2 × R2 is driven to another fixed
point. As we shall show in the next section, this resultant
fixed point corresponds to an insulating phase.
Optical conductivity of holographic CDW and metal-

insulator transition.—Nowwe turn to study the dynamics of
holographic CDWs by computing the optical conductivity as
a function of frequency. To this end, we separate the
variables into the background part and fluctuation part as

gμν ¼ ḡμν þ hμν; Aμ ¼ Āμ þ aμ;

Bμ ¼ B̄μ þ bμ; Φ ¼ Φ̄þ φ: ð7Þ

We assume that the fluctuations of all the fields have a time-
dependent form as e−iωt but independent of the coordinate y.
To solve the fluctuation equations, gauge conditions must be
imposed for gravity and two gauge fields. Here, we choose
the de Donder gauge and Lorentz gauge condition for them,
respectively,

∇̄μĥμν ¼ 0; ∇̄μaμ ¼ 0; ∇̄μbμ ¼ 0; ð8Þ

where ĥμν ¼ hμν − hḡμν=2 is the trace-reversed metric
perturbation.
As usual, we adopt ingoing wave boundary conditions at

the horizon. While at our AdS boundary z ¼ 0, we consider
the following consistent boundary condition with

bxðx; 0Þ ¼ 1; axðx; 0Þ ¼
∂zχðx; 0Þ

μ½1 − ∂zψðx; 0Þ�
othersðx; 0Þ ¼ 0: ð9Þ

Then by holography, we can extract the homogeneous part
of optical conductivity, the quantity we are interested in.
Namely, given that bx ¼ ð1þ jxðxÞzþ…Þe−iωt by solving
the fluctuation equations, the conductivity associated with
the second gauge field reads σðω=μÞ ¼ 4jð0Þx =ðiωÞ, in
which a factor of 4 comes from the unusual asymptotic
form of the metric in Eq. (2).
One typical plotting for the real and imaginary parts of

the optical conductivity at various temperatures is shown in

Fig. 4. Two fundamental features of CDWs are observed.
One is the pinned collective mode, which is reflected as the
first peak appearing in the real part of the conductivity. The
second is the gapped single-particle excitation, which
corresponds to the occurrence of the second peak in the
real part of the conductivity.
The pinning is a common phenomenon for CDWs on

account of the various interactions with the other compo-
nents of the system, which can be described by a damped
harmonic oscillator with Lorentz resonance

σCDWðωÞ ¼
Kτ

1 − iωτð1 − ω2
0=ω

2Þ ; ð10Þ

where τ is the relaxation constant, K is proportional to the
number density of the CDW, and ω0 is the average pinning
resonance frequency [3]. This formula has been widely
employed in the analysis of CDW optical response experi-
ments. Here, we also use it to fit our data. In consistence
with the fact that our holographic CDW is always generated
with multiple wave vectors, we find that, in general, our
data in the low-frequency region of the conductivity can be
well fit with multiple Lorentz oscillators. In particular, as
the temperature is not quite low, for instance T ≥ 0.6Tc,
it can be fit with only two oscillators, namely, σtotðωÞ ¼
σCDW1ðωÞ þ σCDW2ðωÞ, because in this case the contribu-
tion from those CDWs with higher wave vectors is
negligible. Figure 5 shows such a fit to this formula for
T=Tc ¼ 0.6. The parameters in the Lorentz formula for
various temperatures are listed in Table I.
Although this pinned collective mode is gapless, our

single-particle excitation is gapped, as clearly evident from

FIG. 3 (color online). Solutions of the scalar field and the time
component of the gauge field χ for T ¼ 0.8Tc.
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FIG. 4 (color online). The optical conductivity for CDWs,
where the black horizontal line denotes the corresponding optical
conductivity for a AdS-RN black hole associated with the second
gauge field.
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FIG. 5 (color online). The fit of optical conductivity with two
Lorentz oscillators in the low-frequency regime for T ¼ 0.6Tc.
The contributions from the individual oscillator are also plotted
with dashed lines.
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Fig. 4. In particular, the magnitude of gap is estimated as
2Δ=Tc ≈ 20.51 by locating the position of the second
minimum in the imaginary part of the conductivity, which
is obviously much larger than the mean-field BCS value
2Δ=Tc ≈ 3.52. This large gap ratio associated with this gap
is indicative of a strongly coupled CDW phase transition in
our system, as should be the case by holography. On the
other hand, remarkably, this large gap ratio turns out to be
comparable to that of some CDWmaterials. For example, it
follows from the experimental data on the optical conduc-
tivity that the gap ratio is given by 2Δ=Tc ≈ 15.80 for the
single crystalline TbTe3 compound [24].
Now with the spectral weight transferred to our pinned

collective mode and gapped single-particle excitation, the
resultant CDW can be identified as an insulator, as further
evidenced by the decreasing behavior of conductivity at
zero frequency with the decreased temperature. Thus, our
holographic CDW provides an alternative implementation
of metal-insulator transition [25].
We conclude this section with the remark that in the

high-frequency regime, as the temperature goes down, the
contribution from higher-order CDWs will become relevant
such that more peaks and gaps emerge in this regime, which
have been observed in Fig. 4 when T ≤ 0.7Tc. Describing
these new resonances quantitatively requires one to go to
much lower temperature, which involves heavier numerical
computation and is beyond the scope of our Letter.
Discussion.—We have constructed a new type of striped

black hole solution that is characterized by the condensa-
tion of CDWs. Two fundamental features of CDWs have
been precisely reproduced by investigating the optical
conductivity of our holographic CDWs. Together with
the behavior of dc conductivity, we are successfully led
to a new mechanism of the metal-insulator transition by
holographic CDWs.
In addition, taking into account that the significantly

large gap ratio of our holographic CDW is comparable to
the experimental data on some CDW materials, our work
opens a promising window for understanding the related
phenomena of CDWs in condensed-matter physics by
holography.
We would like to end this Letter with one important

reminder. As mentioned before, we have worked in the
large N limit; therefore, the dangerous infrared thermal or
quantum fluctuations are parametrically suppressed as 1=N
corrections [26,27], which explains how we can have the
spontaneous breaking of translational symmetry along one

dimension in a 2þ 1 dimensional system, in apparent
contradiction to the Landau-Peierls theorem [28–30]. Note
that the two- or three-dimensional CDW phase is generi-
cally robust against fluctuations; thus, it is significant to
explicitly check whether our main results obtained here are
carried over onto higher-dimensional holographic CDWs,
although it should be the case. But the involved numerical
computation is extremally nontrivial and expected to be
reported in the future.
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