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The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end,
we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study
(1þ 1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model,
and are able to determine very accurately the ground-state properties and elementary one-particle
excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector
boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full
quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a
quench in the form of a uniform background electric field.
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Gauge theories hold a most prominent place in physics.
They appear as effective low-energy descriptions at differ-
ent instances in condensed matter physics and nuclear
physics. But first and foremost they lie at the root of our
understanding of the four fundamental interactions that are
each mediated by the gauge fields corresponding to a
particular gauge symmetry. At the perturbative quantum
level, this picture translates to the Feynman diagrammatic
approach that has produced physical predictions with
unlevelled precision, most famously in QED. However,
the perturbative approach miserably fails once the inter-
actions become strong. This problem is most pressing for
QCD, where all low-energy features like quark confine-
ment, chiral symmetry breaking, and mass generation are
essentially nonperturbative.
Lattice QCD, which is based on Monte Carlo sampling

of Wilson’s Euclidean lattice version of gauge theories, has
historically been by far the most successful method in
tackling this strongly coupled regime. Using up a sizable
fraction of the global supercomputer time, state-of-the-art
calculations have now reached impressive accuracy, for
instance, in the ab initio determination of the light hadron
masses [1]. But in spite of its clear superiority, the lattice
Monte Carlo sampling also suffers from a few drawbacks.
There is the infamous sign problem that prevents applica-
tion to systems with large fermionic densities. In addition,
the use of Euclidean time, as opposed to real time, presents
a serious barrier for the understanding of dynamical non-
equilibrium phenomena. Over the past few years there has
been a growing experimental and theoretical interest in
precisely these elusive regimes, e.g., in the study of heavy
ion collisions or early time cosmology.
In this Letter we study the application of tensor network

states (TNS) as a possible complementary approach to the
numerical simulation of gauge theories. This is highly

relevant as this Hamiltonian method is free from the sign
problem and allows for real-time dynamics. As a first
application, we focus on the massive Schwinger model.
For this model the TNS approach has been studied before by
Byrnes et al. [2] and Bañuls et al. [3]. By integrating out the
gauge field (which one can only do for d ¼ 1þ 1), the
model was reduced to an ordinary spin model, yet with a
nonlocal Hamiltonian. Our approach is conceptually differ-
ent, as we keep the gauge field degrees of freedom, which
enables us to take the thermodynamic limit, with the relevant
global symmetries exact. TNS have been considered also for
the discrete Z2 gauge theory, for d ¼ 1þ 1 by Sugihara [4],
and for d ¼ 2þ 1 by Tagliacozzo and Vidal [5].
Over the past decade the TNS framework has emerged as

a powerful tool for the study of local quantum many body
systems, exploring the fact that physical states (i.e., ground
states and their low-energy excitations) occupy only a tiny
corner of the full Hilbert space [6]. This is exemplified by
the relatively small amount of quantum entanglement that
these states possess. TNS are then trial quantum states that
precisely capture this feature, allowing for relatively low
cost numerical variational calculations. In one spatial
dimension, they also go by the name of matrix product
states (MPS), underlying the well-known density matrix
renormalization group algorithm (DMRG) [7]. At present,
MPS/DMRG is the state-of-the-art method in the numerical
study of both static and dynamical properties of d ¼ 1þ 1

strongly correlated condensed matter systems. And also in
higher dimensions the TNS framework [8], although less
developed, is considered to be a promising candidate for the
numerical simulation of strongly interacting quantum many
body systems.
The essential new ingredient with respect to the usual

MPS applications on quantum many body systems is that
for the Hamiltonian formulation of gauge theories, within

PRL 113, 091601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

0031-9007=14=113(9)=091601(5) 091601-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1103/PhysRevLett.113.091601


the full Hilbert space only the subspace of gauge-invariant
states is actually physical. Although, due to Elitzur’s
theorem [9] gauge invariance will not be broken on the
full Hilbert space, there will be typically many more low-
energy excitations in the full space than in the constrained
physical subspace. It is therefore crucial to restrict the
variational MPS manifold to this physical subspace. Notice
that the very same issue poses itself in the context of the
simulation of gauge theories with ultracold atoms. See
Ref. [10] for a recent proposal to implement gauge
invariance in that case.
The massive Schwinger model is QED in 1þ 1 dimen-

sions, with one flavor of fermionic particles with mass m,
interacting through a Uð1Þ gauge field with coupling g
(which has mass dimension 1 for d ¼ 1þ 1). This model
shares some interesting features with QCD, most notably
the fermions are confined into zero charge bound states.
Furthermore, in the continuum it can be studied by a strong
coupling expansion [11,12], which makes it a perfect
benchmark model. We will apply our gauge-invariant
MPS construction on the Hamiltonian lattice formulation
of the model, focusing on the strongly coupled regime
g=m≳ 1 and extrapolating our results to the continuum.We
determine the ground state and stable bound states. In
addition, we show how our formalism indeed allows for the
study of real-time phenomena and simulate the full quan-
tum dynamics induced by a background electric field.
The Schwinger Hamiltonian.—To write down a lattice

Hamiltonian for the Schwinger model, one starts from the
Lagrangian density in the continuum,

L ¼ ψ̄ ½γμði∂μ þ gAμÞ −m�ψ −
1

4
FμνFμν: ð1Þ

One can then perform a Hamiltonian quantization in the
timelike axial gauge (A0 ¼ 0), which can be turned in a
lattice system by the Kogut-Susskind spatial discretization
[13] with the two-component fermions sited on a staggered
lattice. These fermionic degrees of freedom can then finally
be converted to spin-1=2 degrees of freedom by a Jordan-
Wigner transformation, leading to the gauged spin
Hamiltonian (see Ref. [2] for more details),

H ¼ g
2

ffiffiffi
x

p
�X

n∈Z
LðnÞ2 þ μ

2

X

n∈Z
ð−1Þn½σzðnÞ þ ð−1Þn�

þ x
X

n∈Z
½σþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:�

�
: ð2Þ

Here we have introduced the parameters x≡ 1=ðg2a2Þ and
μ≡ 2

ffiffiffi
x

p
m=g, with a the lattice spacing.

The spins live on the sites of the lattice, with σzðnÞjsni ¼
snjsniðsn ¼ �1Þ and σ� ¼ 1=2ðσx � iσyÞ the spin ladder
operators. Notice the different second (mass) term in the
Hamiltonian for even and odd sites. This can be traced back
to the staggered formulation, with the even sites being

reserved for the “positrons” and the odd sites for the
“electrons.” For the even positron sites, s2n ¼ þ1 can be
viewed as an occupied state, while s2n ¼ −1 corresponds to
an empty state, and vice versa for the odd electron sites. The
gauge fields θðnÞ ¼ agA1ðna=2Þ live on the links between
the sites. Their conjugate momenta LðnÞ, with
½θðnÞ; Lðn0Þ� ¼ iδn;n0 , correspond to the electric field
gLðnÞ ¼ Eðna=2Þ. Since θðnÞ is an angular variable,
LðnÞ will have integer charge eigenvalues pn ∈ Z. The
local Hilbert space, spanned by the corresponding eigen-
kets jpni is therefore infinite, but in practice we will do a
truncation and consider jpnj ≤ pmax in a numerical scheme.
For our calculations, we take pmax ¼ 3.
The Hamiltonian (2) is invariant under T2, a translation

over two sites, and the corresponding eigenvalues read
T2 ¼ e2ika, where k is the physical momentum of the state.
Another symmetry that will be useful is CT, obtained by a
translation over one site, followed by a charge conjugation,
Cjsn; pni ¼ j−sn;−pni. Since C2 ¼ 1, we will have
CT ¼ �eika. The states with positive sign then correspond
to the scalar sector, while the negative sign corresponds to
the vector sector.
In addition, the Hamiltonian is invariant under the

residual time-independent local gauge transformations,
generated by

Gn ¼ LðnÞ − Lðn − 1Þ − 1

2
½σzðnÞ þ ð−1Þn�: ð3Þ

It is this gauge invariance that sets the Hamiltonian
quantization of gauge theories apart from the
Hamiltonian quantization of ordinary systems. For gauge
theories only the subspace of gauge-invariant states will be
physical: GnjΨiphys ¼ 0 for every n. This is called the
Gauss law constraint, as Gn ¼ 0 is indeed the discretized
version of ∂xE ¼ ρ. We will now show how one can tailor
the MPS formalism towards a constrained variational
method on this physical gauge-invariant subspace.
Gauge-invariant MPS.—A general, not necessarily

gauge-invariant MPS for the lattice spin-gauge system
(2), has the form

X

sn;pn

Tr½Bs1
1 C

p1

1 Bs2
2 C

p2

2 …Cp2N
2N �js1; p1; s2; p2…; p2Ni; ð4Þ

where for now we consider a finite lattice of 2N sites. Here,
each Bsn

n (and Cpn
n ) is a complex D ×D matrix with

components ½Bsn
n �αβ that constitute the variational param-

eters of the trial state. The indices α, β ¼ 1;…; D are
referred to as virtual indices, and D is called the bond
dimension.
Gauss’s law [see Ref. (3)] prescribes how to update the

electric field LðnÞ at the right link of a site n, either staying
with the value Lðn − 1Þ at the left in case there is no charge
at the site or adding (subtracting) one unit in case there is a
positive (negative) charge at the site. This can be conveyed
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by the matrix multiplications in a MPS by giving the virtual
indices a multiple index structure α → ðq; αqÞ, where q
labels the charge, and taking the matrices of the form

½Bsn
n �ðq;αqÞ;ðr;βrÞ ¼ ½bsnn;q�αq;βrδqþ½snþð−1Þn�=2;r;

½Cpn
n �ðq;αqÞ;ðr;βrÞ ¼ ½cpn

n �αq;βrδq;pn
δr;pn

: ð5Þ

One can readily verify that a MPS (4) with matrices of this
form indeed obeys the Gauss law constraint at every site.
Conversely, we show in S1 of the Supplemental Material
[14] that every gauge-invariant state jΨi, obeying GnjΨi ¼
0 for every n, has a MPS representation of the form (5).
Ground state and excitations.—To obtain a ground-state

approximation in the thermodynamic limit (N → ∞), it will
be useful to block a site and link into one site with the local
Hilbert space spanned by the states jq2n−1i ¼ js2n−1; p2n−1i
and jq2ni ¼ js2n; p2ni. Anticipating CT ¼ 1, the gauge-
invariant ground state ansatz then takes a form similar to a
uniform MPS (uMPS) [15],

jΨðAÞi ¼
X

qn

v†L

�Y

n∈Z
Aqn

�
vRjqci; ð6Þ

where jqci ¼ jfð−1Þnqngn∈Zi, vL, vR ∈ CD, and
Aq ∈ CD×D, as follows from (5),

½As;p�ðq;αqÞ;ðr;βrÞ ¼ ½as;p�αq;βrδp;qþðsþ1Þ=2δr;−p: ð7Þ

We refer to S2 of the Supplemental Material [14] for the
details and implementation of the time-dependent varia-
tional principle (TDVP) [16] to obtain an approximation for
the ground state. The variational freedom of the gauge-
invariant state jΨðAÞi lies within the matrices as;p ∈
CDq×Dr and the total bond dimension of the uMPS equals
D ¼ P

q∈ZDq. It will be important to choose the distri-
bution of Dq wisely, according to the relative weight of the
different charge sectors. As illustrated in Fig. 1(a), this is
done by looking at the Schmidt coefficients for an arbitrary
cut and demanding that the smallest coefficients of each
sector coincide more or less. The resulting distribution of
Dq is peaked around q ¼ 0 and justifies our pmax ¼ 3
truncation that corresponds to Dq ¼ 0 for jqj > 3 (see also
S3 of the Supplemental Material [14]).
Once we have a good approximation for the ground state,

we can use the method of Refs. [17,18] to obtain the one-
particle excited states. The excitations are labeled by their
(physical) momentum k ∈ ½−π=2a; π=2a½ and their CT
quantum number γ ¼ �1. For a given ground-state
approximation, we then take the following ansatz state
jΦk;γðB;AÞi for the one-particle excitations:

X

m∈Z
eikmaγm

X

qn

v†L

�Y

n<m

Aqn

�
Bqm

�Y

n>m

Aqn

�
vRjqci; ð8Þ

with Bq again of the gauge invariant form (7) with general
matrices bs;p. These are determined variationally by
minimizing their energy in the ansatz subspace, which
leads to a generalized eigenvalue problem (see S2 of the
Supplemental Material [14] for more details). For a given
momentum and CT quantum number, we typically find
different local minima of which only one or two are stable
under variation of the bond dimensionD [see fig. 1(b)]. It is
these stable states that we can interpret as approximations
to actual physical one-particle excitations.
In Table 1 we display our results for the continuum

extrapolations a → 0 (x → ∞) of the ground-state energy
density and the mass of the different one-particle excita-
tions (we refer to S3 of the Supplemental Material [14] for
more details). For g=m ≠ 0, we find three excited states,
one scalar and two vectors, with the hierarchy of masses
Mv;1 < Ms;1 < Mv;2 matching that of the strong coupling
result [11,12]. This is the first time that the second vector
excitation has been found numerically. For the energy
density and the two lowest mass excitations, our results are
consistent with the previous most precise simulations [2,3],
with a similar or sometimes better accuracy. As shown in
the Supplemental Material, we were also able to reconstruct
the Einstein dispersion relation for small momenta ka ≪ 1.

(a) (b)

FIG. 1 (color online). Results for m=g ¼ 0.25, x ¼ 100. (a)
Distribution of the (base-10) logarithm of the Schmidt coeffi-
cients λ in every charge sector for D ¼ ð5; 20; 48; 70; 62; 34; 10Þ.
(b) Difference for the estimated energies of the excited states
for various bond dimension with respect to these with
D ¼ ð5; 20; 48; 70; 62; 34; 10Þ for the vector sector γ ¼ −1. Only
the first two excitations are stable under variation over D.

TABLE I. Energy density and masses of the one-particle
excitations (in units g ¼ 1) for different m=g. The last column
displays the result for the heavy vector boson, compatible with
the prediction of Coleman and Adam [11,12].

m=g ω0 Mv;1 Ms;1 Mv;2

0 −0.318 320ð4Þ 0.564 18(2)
0.125 −0.318 319ð4Þ 0.789 491(8) 1.472(4) 2.10(2)
0.25 −0.318 316ð3Þ 1.019 17(2) 1.7282(4) 2.339(3)
0.5 −0.318 305ð2Þ 1.487 473(7) 2.2004(1) 2.778(2)
0.75 −0.318 285ð9Þ 1.963 47(3) 2.658 943(6) 3.2043(2)
1 −0.318 26ð2Þ 2.444 41(1) 3.1182(1) 3.640(4)
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Real-time evolution.—One of the main advantages of the
TNS framework is that it allows for the full quantum
simulation of real-time phenomena. Specifically, we have
investigated the nonequilibrium dynamics induced by
applying a uniform electric field E on the ground state
jΨ0i at time t ¼ 0. Physically, the process corresponds to
the so-called Schwinger particle creation mechanism [19],
but now for a confining theory. This process has been
studied extensively in the past, either with some effective
classical kinetic description [20,21] or in the semiclassical
limit for the gauge fields [21–23] and recently also with
the AdS/CFT correspondence [24]. Here we focus on
the systematics of our method and present some first
results, allowing us to validate our formalism against the
predicted scaling from linear response theory and energy
conservation. A more detailed analysis will be presented
elsewhere [25].
In our setup the application of a uniform electric field is

simulated by applying a uniform quench, replacing LðnÞ
with LðnÞ þ α in the Hamiltonian (2), where E ¼ gα. As
before, we define our ansatz by blocking a site and a link
into one site. But since the background field now breaksCT
invariance, we can anticipate translation symmetry T2 ¼ 1
over only two sites. Our ansatz thus takes the form

jΨðA1; A2Þi ¼
X

qn

v†L

�Y

n∈Z
Aq2n−1
1 Aq2n

2

�
vRjfðq2n−1; q2nÞgi;

ð9Þ

where qn ¼ ðsn; pnÞ. From Eq. (5) it follows that gauge
invariance is imposed if we set ½As;p

n �ðq;αqÞ;ðr;βrÞ ¼
½as;pn �αq;βrδp;qþðsþð−1ÞnÞ=2δr;p.
To perfom the real-time evolution, we have implemented

the infinite time-evolving block decimation algorithm
(iTEBD) [26] using a fourth-order Trotter expansion
[27] with time step dt ¼ 0.01=g. We refer to S4 of the
Supplemental Material [14] for the details. At every step
iTEBD truncates the Hilbert space by discarding the
Schmidt coefficients lower than some fixed threshold ϵ2.
For gauge invariant MPS this in turn determines the
required bond dimensions Dp for every charge sector that
will evolve in time. For instance, for the value ϵ0 ¼ 2 ×
10−6 that we used for the simulations in Figs. 2(b)–2(d),
and for α ¼ 0.3, the maximal bond dimension goes from
D0 ¼ 18 at t ¼ 0 toD0 ¼ 173 at t ¼ 25. It is this growth of
the required bond dimensions, which can be traced back to
the growth of entanglement, that makes the computations
more costly at later times. As the simulation should be
exact as ϵ → 0, the convergence in ϵ can be used to control
the truncation error for a certain observable. We illustrate
this in Fig. 2(a) for the electric field expectation value. Also
notice that the convergence rate decreases in time. Keeping
the truncation error small for larger time intervals will
therefore require smaller values of the tolerance ϵ.

In Fig. 2(b) we display our result for the evolution of the
electric field expectation value (minus the background
value) for different values of α. For early times we clearly
find the α-scaling behavior as predicted from linear
response theory (see S5 of the Supplemental Material
[14]). The α ¼ 0.005 and α ¼ 0.01 cases remain in the
linear response regime throughout the entire depicted
evolution; the periodic oscillations in this case can be
traced back to the dominant production of the single-
particle vector excitation in the linear response regime (see
S5 of the Supplemental Material [14]). Larger values of α
progressively depart from linear response, showing more
complex behavior at later times. The physical picture here
[21], which we study in more detail in Ref. [25], is that the
charged fermionic particles that are created by a strong
initial electric field in turn backreact onto this field.
In Fig. 2(c) we display the analogous result for the

electric field squared expectation value. As the operatorP
nL

2ðnÞ is now invariant under CT, this should scale as α2

for early times (see S5 of the Supplemental Material [14]),
which is indeed what we find. Finally, in Fig. 2(d) we show
the evolution of the energies in the different sectors. We see
that the energy which is initially injected in the first gauge

(a) (b)

(c) (d)

FIG. 2 (color online). Results for m=g ¼ 0.25, x ¼ 100, all
quantities are in units g ¼ 1. (a) Difference of EðtÞ≡
hΨ0ðtÞjLð1Þ þ Lð2ÞjΨ0ðtÞi=2 for various tolerances ϵ with re-
spect to the estimated value for ϵ ¼ ϵ0 ¼ 2 × 10−6 (α ¼ 0.3).
(b) EðtÞ=α for different values of α. (c) EsqðtÞ=α2, with
EsqðtÞ≡ hΨ0ðtÞjL2ð1Þ þ L2ð2ÞjΨ0ðtÞi=2, for the same set of α
values as in (b). (d): For α ¼ 0.3, the different energy densities of,
respectively, the first (Hg), second (Hf), and third term (Hi) of
Eq. (2) but with LðnÞ → LðnÞ þ α (we subtracted the values at
t ¼ 0 without background field). The straight blue line is the total
energy density obtained as the sum of the three terms.
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field term in (2) partially leaks into the second fermionic
mass term and third kinetic or interaction term, as we can
again qualitatively understand from the fermionic particle
creation picture. In Ref. [22] a similar behavior was
observed in the semiclassical limit. A last cross-check of
our real-time results is then provided by the total energy
conservation which is indeed satisfied, as can be seen from
the blue line in Fig. 2(d).
Conclusions.—In this Letter we have demonstrated

the potential of MPS as a numerical method for gauge
theories. It is clear that we have only scratched the
surface of this approach and that even within the
Schwinger model there are many other types of calculations
one could do, like, for instance, the construction of
two-particle scattering states [28]. Looking further
afield, one can easily generalize our gauge invariant
MPS ansatz to other gauge groups like SUðNÞ and also
to higher dimensions. Explicitly for d ¼ 2þ 1, the
gauge-invariant 2d projected entangled pair states
(PEPS) [8] construction now involves five-leg tensors with
four virtual indices and one physical index (c is charge) on
the sites, of the form ½Bc�ðql;αql Þ;ðqr;αqr Þ;ðqd;αqd Þ;ðqu;αqu Þ ¼
½bcql;qr;qu �αql ;αqr ;αqd ;αqu δqlþqdþc;qrþqu , while on the links

we get a three-leg tensor with two virtual indices and
one physical index (p is the electric field unit)
½Cp�ðql;αql Þ;ðq;αqr Þ ¼ ½cp�αql ;αqr δql;pδqr;p.
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Note added.—Recently, Ref. [29] appeared with an
approach that is conceptually close to ours. In that
Letter, the authors use a quantum link model to write
down gauge-invariant MPS for the Schwinger model.

[1] S. Dürr et al., Science 322, 1224 (2008); Z. Fodor and
C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012).

[2] T. M. R. Byrnes, P. Sriganesh, R. J. Bursill, and C. J. Hamer,
Nucl. Phys. B, Proc. Suppl. 109, 202 (2002); T. M. Byrnes,
P. Sriganesh, R. J. Bursill, and C. J. Hamer, Phys. Rev. D 66,
013002 (2002); T. M. R. Byrnes, Ph.D. thesis, The Uni-
versity of New South Wales, 2003, http://books.google.co
.jp/books?id=FwaiXgJWM2MC.

[3] M. C. Bañuls, K. Cichy, K. Jansen, and J. I. Cirac, J. High
Energy Phys. 11 (2013) 158; M. C. Bañuls, K. Cichy,

J. I. Cirac, K. Jansen, and H. Saito, Proc. Sci., LAT2013
(2013) 332 [arXiv:1310.4118].

[4] T. Sugihara, J. High Energy Phys. 7 (2005) 022.
[5] L. Tagliacozzo and G. Vidal, Phys. Rev. B 83, 115127

(2011).
[6] J. I. Cirac and F. Verstraete, J. Phys. A 42, 504004 (2009).
[7] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[8] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066.
[9] S. Elitzur, Phys. Rev. D 12, 3978 (1975).

[10] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88,
023617 (2013).

[11] S. Coleman, Ann. Phys. (N.Y.) 101, 239 (1976).
[12] C. Adam, Phys. Lett. B 382, 383 (1996).
[13] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[14] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.091601 for (S1) a
proof of the general gauge invariant MPS form in Eq. (5),
(S2) details on the TDVP method and one-particle excita-
tions for gauge invariant MPS (in the presence of the CT
symmetry), (S3) more details on the results for the ground
state and excitations, (S4) details on the application of the
iTEBD method for the real-time evolution of gauge invari-
ant MPS, and (S5) the explicit derivation of the relevant
expressions in the linear response regime.

[15] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun.
Math. Phys. 144, 443 (1992).

[16] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H.
Verschelde, and F. Verstraete, Phys. Rev. Lett. 107,
070601 (2011).

[17] J. Haegeman, B. Pirvu, D. J. Weir, J. I. Cirac, T. J. Osborne,
H. Verschelde, and F. Verstraete, Phys. Rev. B 85, 100408
(2012).

[18] J. Haegeman, T. J. Osborne, and F. Verstraete, Phys. Rev. B
88, 075133 (2013).

[19] J. Schwinger, Phys. Rev. 82, 664 (1951).
[20] S. Schmidt, D. Blaschke, G. Röpke, S. A. Smolyansky,

A. V. Prozorkevich, and V. D. Toneev, Int. J. Mod. Phys. E
07, 709 (1998).

[21] Y. Kluger, J. M. Eisenberg, B. Svetitsky, F. Cooper, and
E. Mottola, Phys. Rev. D 45, 4659 (1992).

[22] F. Hebenstreit, J. Berges, and D. Gelfand, Phys. Rev. D 87,
105006 (2013).

[23] F. Gelis and N. Tanji, Phys. Rev. D 87, 125035
(2013).

[24] D. Kawai, Y. Sato, and K. Yoshida, Phys. Rev. D 89, 101901
(2014).

[25] B. Buyens, J. Haegeman, F. Verstraete, and K. Van
Acoleyen (to be published).

[26] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007); R. Orús and
G. Vidal, Phys. Rev. B 78, 155117 (2008).

[27] M. Suzuki, Phys. Lett. A 146, 319 (1990); N. Hatano and
M. Suzuki, Lect. Notes Phys. 679, 37 (2005).

[28] L. Vanderstraeten, J. Haegeman, T. J. Osborne, and
F. Verstraete, Phys. Rev. Lett. 112, 257202 (2014).

[29] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and
S. Montangero, Phys. Rev. Lett. 112, 201601 (2014).

PRL 113, 091601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

091601-5

http://dx.doi.org/10.1126/science.1163233
http://dx.doi.org/10.1103/RevModPhys.84.449
http://dx.doi.org/10.1016/S0920-5632(02)01416-0
http://dx.doi.org/10.1103/PhysRevD.66.013002
http://dx.doi.org/10.1103/PhysRevD.66.013002
http://books.google.co.jp/books?id=FwaiXgJWM2MC
http://books.google.co.jp/books?id=FwaiXgJWM2MC
http://books.google.co.jp/books?id=FwaiXgJWM2MC
http://books.google.co.jp/books?id=FwaiXgJWM2MC
http://dx.doi.org/10.1007/JHEP11(2013)158
http://dx.doi.org/10.1007/JHEP11(2013)158
http://arXiv.org/abs/1310.4118
http://dx.doi.org/10.1088/1126-6708/2005/07/022
http://dx.doi.org/10.1103/PhysRevB.83.115127
http://dx.doi.org/10.1103/PhysRevB.83.115127
http://dx.doi.org/10.1088/1751-8113/42/50/504004
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://arXiv.org/abs/cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevD.12.3978
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1016/0370-2693(96)00695-8
http://dx.doi.org/10.1103/PhysRevD.11.395
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevB.85.100408
http://dx.doi.org/10.1103/PhysRevB.85.100408
http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1142/S0218301398000403
http://dx.doi.org/10.1142/S0218301398000403
http://dx.doi.org/10.1103/PhysRevD.45.4659
http://dx.doi.org/10.1103/PhysRevD.87.105006
http://dx.doi.org/10.1103/PhysRevD.87.105006
http://dx.doi.org/10.1103/PhysRevD.87.125035
http://dx.doi.org/10.1103/PhysRevD.87.125035
http://dx.doi.org/10.1103/PhysRevD.89.101901
http://dx.doi.org/10.1103/PhysRevD.89.101901
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1007/11526216
http://dx.doi.org/10.1103/PhysRevLett.112.257202
http://dx.doi.org/10.1103/PhysRevLett.112.201601

