
Chiral Mass-Gap in Curved Space

Antonino Flachi1 and Kenji Fukushima2
1Centro Multidisciplinar de Astrofísica, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,

Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
2Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

(Received 26 June 2014; published 28 August 2014)

We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum, a mass-gap
of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive
large, the chiral condensate melts but a chiral invariant mass-gap can still remain, which we name the chiral
gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black
holes surrounded by a first-order QCD phase transition.
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Introduction.—Quantum field theory in curved space-
time is a well-established subject [1] with phenomenologi-
cal applications to nuclear physics and condensed matter
physics now being developed. In the presence of a
gravitational background, the metric tensor is naturally
distorted from flat Minkowskian space-time. In usual
laboratory environments, gravitational effects are negli-
gibly small as compared to typical scales in the considered
theory: for example, ΛQCD in quantum chromodynamics
(QCD). (See Refs. [2] for a discussion of the possibility that
such small effects could explain the QCD origin of dark
energy.)
In the Universe, in contrast to laboratory experiments, it

may be possible to imagine a situation where curvature can
be as large as Λ2

QCD, e.g., black holes [3]. While it is often
said that ordinary quantum field theory becomes problem-
atic in the vicinity of the event horizon of a black hole (i.e.,
the trans-Planckian problem), one can safely consider a
region at a specifically chosen distance from the horizon
where the standard model should be still valid under non-
negligible gravitational effects.
Because of the complicated vacuum structure of QCD, in

order to accommodate nonperturbative phenomena like
dynamical generation of mass and confinement of quarks
and gluons, it is conceivable to regard the black hole as an
extended object surrounded by a “media” consisting of
QCD vacuum. Such a crustlike content around the black
hole is naturally associated with QCD phase transitions (as
discussed in Refs. [4]) and should deserve a more attentive
study along similar lines to those related to the recent
disputes on the black hole complementarity, namely, the so-
called firewall hypothesis [5]. At classical level, one may
think that no drastic phenomenon should happen in the
freely falling frame in which the gravitational field, even if
very strong, is locally canceled. In QCD, however, hadron
wave functions at rest and those in the infinite momentum
frame look totally different [6]. In fact, as we discuss later,
the QCD vacuum structure filled with quantum fluctuations

should change drastically near, but not too close to, the
horizon of the black hole.
Also in laboratory experiments, interestingly enough,

descriptions based on quantum field theory in curved
backgrounds are, in some cases, important. In relativistic
heavy-ion collisions, hot and dense QCDmatter (the quark-
gluon plasma) is created, and it goes though expansion at
the speed of light. Therefore, the space-time evolution has
an event horizon [7], and quantum spectra in the expanding
geometry (i.e., in the Bjorken coordinates) look analogous
to those in Rindler coordinates. [See similarity between
Eq. (27) of Ref. [8] and Eq. (5.25) of Ref. [9].] In this
context, the speculative scenario that particle production in
QCD may be related to a Hawking temperature charac-
terized by the saturation scale of the strong interaction is
certainly suggestive [10].
Effects of curved spacetime are also relevant for con-

densed matter laboratory experiments. There are, for
instance, theoretical proposals (awaiting experimental con-
firmation) of Hawking radiation from acoustic “black
holes” in atomic Bose-Einstein condensates [11] with
the density correlation being an experimental signature
[12]. The formulation and physical implications of the
present work may have potential relevance for such systems
of ultracold atoms.
In our study, we will focus on the effect of curvature on

massless Dirac fermions. This problem should attract
general interest not only in relation to the chiral physics
of QCD, but also for condensed matter systems. Massless
Dirac particles are nowadays known to emerge not only in
high-energy physics: in graphene, at the interface on the
topological insulators, etc. In principle, deformed materials
may realize a nonzero curvature in a controllable way.
Then, unlike the case of black holes, it could be sensible to
consider a negative curvature as well (with a saddle point
shaped deformation), which we will argue later.
The following discussions are based on the observation

that Dirac fermions can have a chiral invariant mass gap
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due to the curvature (and we call this the “chiral gap
effect”). On the algebraic level the chiral mass-gap has been
partially recognized for many years [1] (See also Ref. [13]),
but its application to QCD is not yet mature. Let us look
quickly over the calculation scheme to demonstrate how
such a chiral invariant mass arises.
Grand potential in curved space.—In fermionic systems,

the effective mass Meff with interaction clouds can differ
from the bare one and when the Lagrangian has no explicit
mass term (i.e., chiral limit),Meff should be proportional to
the scalar (chiral) condensate of the fermion bilinear:

Meff ¼ Ghψ̄ψi: ð1Þ
Here, G is a coupling that adjusts the proper mass
dimension. Such an effective mass should solve the gap
equation or, equivalently, should minimize the grand
potential Ω½Meff �. Generally speaking, the grand potential
consists of two contributions: one from the tree diagrams
and the other from the fermion loops. Namely, Ω½Meff � ¼
Ωtree½Meff � þ Ωloop½Meff � with

βΩloop½Meff � ¼ −ν ln Detði∇ −MeffÞ; ð2Þ

where β is the inverse temperature and ν represents the
number of fermionic degrees of freedom. In the chiral limit,
thus, Meff is the order parameter for the spontaneous
breaking of chiral symmetry.
We adopt the well-known technique of iterating the Dirac

operator in Eq. (2) in order to deal with a second order
operator [1]. Then, we find the following:

βΩloop½Meff � ¼ −
ν

2
lnDet

�
□þM2

eff þ
R
4

�
: ð3Þ

Here, R is the scalar curvature. We note that the
d’Alembertian □ incorporates the spin connection. For
maximally symmetric geometries such as (anti–)de Sitter
space, it is often possible to take the above determinant
exactly (see, for instance, Ref. [14] and references therein),
but the final expression is too much involved to guide plain
intuition.
To extract the essence of underlying physics, it is

convenient to introduce a truncation scheme. Let us first
take an ultrastatic metric; i.e., gττ ¼ 1 (in the Euclidean
convention). We can actually reach this special form by
means of an appropriate conformal transformation. We can
then adopt the resummed heat-kernel expansion according
to the Jack-Toms-Parker ansatz [15]. In fact, the determi-
nant has ultraviolet singularities and the ζ-function regu-
larization, as first utilized by Hawking [16], Dowker and
Critchley [17], is one of the methods most frequently
used, particularly in curved space-time (see, however,
Ref. [18] for an example that uses cutoff regularization).
We can thus put the quantity inside the determinant into the
exponential as

Trspacee−t½−∂
2
τ−ΔþM2

effþR=4�

¼ 1

ð4πtÞ2 e
−t½−∂2τþM2

effþR=4−R=6�X
k

traktk: ð4Þ

Here, Trspace means that we take the trace over spatial
coordinates only, and ak’s represent the resummed heat-
kernel coefficients as listed in Ref. [15]. The crucial point is
that Eq. (4) makes a full resummation with respect to R: the
coefficients ak’s are functions of Rμνρσ and Rμν but not of R.
The above expression [Eq. (4)] is valid for both constant
and nonconstant curvature spacetimes. Notice that in the
presence of a cosmological constant, one is led to the
former case, and our considerations with constant curvature
will be valid. The first few coefficients, for the case of
constant curvature, read:

a0 ¼ 1; a1 ¼ 0;

a2 ¼
1

180
½RμνρσRμνρσ − RμνRμν� þ 1

12
WμνWμν; ð5Þ

where Rμνρσ and Rμν are the Riemann and the Ricci
curvature tensors, respectively, and Wμν ¼ ½∇μ;∇ν�.
Notice that while the property of resummation is main-
tained also for spacetimes with nonconstant curvature, in
this more general case, additional terms (dependent on the
derivatives of R andWμν) appear in a2. Such modifications
will not change the main results discussed below. For more
calculation details, see Ref. [19]. We note that we do not
take the trace over the γ matrices in Eq. (4). This means that
ak’s in Eq. (5) should be interpreted as matrices with
respect to the Dirac indices.
For the time being, we neglect ak with k > 0 to capture

the qualitative features of fermions in curved spacetime and
come back to these corrections later. We note that such a
truncation is justifiable if the number of dimensions, D, is
large enough. Although we do not assume any specific
form of the geometry except that the scalar curvature is
constant, let us take simple concrete examples. For max-
imally symmetric geometries such as (anti–)de Sitter space,
indeed, the Riemann and the Ricci tensors are as sup-
pressed by D as

RμνρσRμνρσ

R2
¼ 2

DðD − 1Þ ;
RμνRμν

R2
¼ 1

D
: ð6Þ

For more general geometries, one may come to the same
conclusion by using the Weyl decomposition [see formula
(228) in Ref. [20]].
Once we admit the k ¼ 0 dominance, we eventually

come by a very simple picture, where the effect of the scalar
curvature replaces the effective mass as seen in Eq. (4) as

M2
eff → M2

eff þ
R
12

: ð7Þ
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This is a profound observation, and at the same time, seems
to be puzzling at a glance. In the chiral symmetric phase,
we haveMeff ¼ 0, but fermions are still gapped with R=12.
How can we reconcile chiral symmetry and such gapped
fermions?
Similarity and dissimilarity to the thermal mass.—This

kind of chiral invariant mass is common in thermal field
theory. In the hard thermal loop resummation, the self-
energy should be inserted in the fermion propagator which
produces a thermal mass [21]; nevertheless, it does not
affect the commutativity between the propagator and γ5. In
the limit of vanishing spatial momenta (p ¼ 0), the fermion
propagator inverse reads:

iS−1ðp0Þ ¼ p0γ
0 −

m2
T

p0

γ0 −Meff ; ð8Þ

as a function of the energy p0, where m2
T ¼ ð1=6Þg2T2

represents the one-loop thermal mass squared. The pole is
located at p0 ¼ �mT ≠ 0, even whenMeff ¼ 0 in the chiral
symmetric phase. Althoughm2

T must be a function of T, the
authors of Ref. [22] have calculatedΩ½Meff � as a function of
mT as if mT is an independent variable and they found the
chiral transition temperature lowered with increasing mT .
We see that the correction to the fermion mass due to R is

quite similar tom2
T . As a matter of fact, the interpretation of

Eq. (7) is even simpler. If we naïvely combine it with
Eq. (1), a shift in G2hψ̄ψi2 would break chiral symmetry.
We should, however, identify this shift in a chiral invariant
G2ρ with ρ≡ hψ̄ψi2 þ hψ̄iγ5τψi2. Hence, the fermion
mass gap can be consistent with chiral symmetry.
This mechanism to generate a mass-gap helps us to

understand how the curvature would affect the chiral phase
transition. Let us consider a spacetime of constant curvature
and parametrize the ρ dependence of the grand potential as

βΩ½ρ� ¼ aðT − TcÞρþ λρ2 þ � � � ð9Þ

near the second-order critical point at T ¼ Tc. It should be
noted thatwe can introduce the temperatureT independently
from R by using the metric tensors depending on the real-
time t and compactifying the manifold along the imaginary-
time τ. In the presence of a finite curvature, Eq. (7) shifts ρ
as ρþ R=ð12G2Þ, and so Tc is also modified as

βΩ½ρ� →
�
aðT − TcÞ þ

λR
6G2

�
ρþ ρ2 þ � � � ; ð10Þ

from which the critical temperature shifts to

T�
c ¼ Tc −

λR
6G2a

: ð11Þ

This is a result reminiscent of the effect of mT on the chiral
phase transition as argued in Ref. [22].We note that this shift

successfully reproduces the qualitative behavior found in
solvable examples [14].
We shall point out two important differences between the

roles played by mT and R. The first is that, unlike mT , R is
an independent variable and is not constrained by T.
Curvature and temperature effects are in sharp contrast
in the way they manifest in realistic systems: we cannot
address a quantum phase transition induced by mT, but it
would be sensible to do so for R. In fact, Eq. (11) implies
that a phase transition takes place at R ¼ 6G2aTc=λ even
for T ¼ 0.
The second difference is that a negative shift with R < 0

is also possible in Eq. (7) (see Ref. [23] for an analysis of
dynamical symmetry breaking in spaces of negative cur-
vature). Then the effective mass increases by jRj=12, so that
T�
c should increase. This may lead us to an interesting

conjecture that the chiral phase transition and the quark
deconfinement could become completely distinct if R is
negative large. To confirm this, however, we need to
address the Yang-Mills dynamics in curved spacetime
using a first-principle approach [24], which is beyond
our current scope. Instead, in this work, we shall focus on
the effect of fermion excitations on the quark deconfine-
ment and find that the decoupling tendency is common also
for R > 0.
Thermal excitation and quark deconfinement.—At finite

T, we can characterize the quark deconfinement using an
order parameter:

Φ ¼ 1

Nc
trL; ð12Þ

which is called the (traced) Polyakov loop (see Ref. [25]
and references therein). We can rigorously define the quark
deconfinement only in the pure Yang-Mills theory that has
center symmetry. In QCD with light flavors, the deconfine-
ment crossover turns out to be smooth due to fermion
interactions. As discussed in Ref. [26], the chiral phase
transition controls the fermion mass, and the deconfine-
ment would be more favored with lighter quarks after the
chiral phase transition. This is a qualitative picture to
understand the simultaneous crossover of quark deconfine-
ment and chiral restoration as observed in the lattice QCD
simulation.
Thermally excited fermions on the gluonic background

generate terms that break center symmetry. They concretely
arise from

βΩloop½Meff � ¼ −Nf

XNc

i¼1

ln Detði∇ −Meff þ iϕiγ
tÞ; ð13Þ

where ν is specified as the flavor number Nf, and we also
take the trace over color up to Nc. In the determinant, a new
variable ϕi’s appear to represent the eigenvalues of the
Polyakov loop matrix: L ¼ diagðeiϕiÞði ¼ 1; 2;…; NcÞ. In
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a special gauge called the Polyakov gauge, ϕi’s correspond
to the diagonal components of the temporal gauge poten-
tial Aτ.
As we already saw, the effective mass is shifted by R=12,

and a straightforward summation over the Matsubara
frequencies yields ΩT¼0

loop þΩT
loop with

βΩT
loop ¼ −2NfV

Z
d3p
ð2πÞ3 Trfln½1þ Le−βðεp−μÞ�

þ ln½1þ L†e−βðεpþμÞ�g; ð14Þ

where the quasiparticle energy dispersion is εp≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

eff þ R=12
p

. This is a simple expression but it
encompasses the essence of all complicated calculations as
done in Refs. [27,28]. In flat space, usually, Meff controls
the explicit breaking of center symmetry. As soon as a
nonzero R is turned on, thermally excited fermions are
suppressed by not only Meff but also R. Therefore, even in
the chiral symmetric limit, if R is larger than T, fermion
excitations are almost absent, so that center symmetry can
be an approximate symmetry.
To quantify this speculation, let us plot the (dimension-

less) magnitude of the center symmetry breaking for μ ¼ 0;
i.e., Δ≡ ðβ4=VÞðΩT

loop½Φ ¼ 1� −ΩT
loop½Φ ¼ −1�Þ. As we

see in Fig. 1, because of a small coefficient 1=12, we need
to have hundreds times as large R as T2 to realize
decoupling.
Once the decoupling happens, the gluonic sector should

behave as pure Yang-Mills theory. Thus, the quark decon-
finement transition should be of first order rather than
smooth crossover. One may think that the deconfinement is
also eased by large R, and indeed, we remark that the
infrared singularity is weakened in curved spacetime [29].

Higher-order corrections.—Higher-order corrections
from the heat kernel expansion can be easily taken into
account in our scheme. These terms involve combinations
of Riemann and Ricci curvature tensors and correct the
grand potential by δΩloop. We can utilize Eq. (5) to show
that it is related to the leading-order term as

δΩloop ¼ a2

� ∂
∂M2

eff

�
2

Ωloop: ð15Þ

It is a nontrivial finding that the correction terms take a
form of mass derivatives. Then, we notice that a mass shift
can reproduce the above result as Ωloop½M2

eff þ δM2
eff �≈

Ωloop½M2
eff � þ δΩloop½M2

eff �. We can show that the coeffi-
cient a2 is negative in general, and then the mass squared
correction turns out to be purely imaginary:

δM2
eff ¼ i

ffiffiffiffiffiffiffiffi
ja2j

p
; ð16Þ

or the self-energy has an imaginary part. Actually, one can
confirm a2 < 0 by plugging Eq. (6) into a2 in Eq. (5). The
appearance of complex energy dispersion indicates that the
vacuum is not stable. In fact, the curvature induced particle
production, as observed in Ref. [24], suggests an alteration
of the vacuum persistence. Further investigations to deepen
our understanding on the physical interpretation of these
complex corrections is necessary.
Finally, let us also point out that Eq. (15) is proportional

to the chiral susceptibility χ. Since χ is enhanced at the
chiral phase transition, there may be an interesting interplay
between the chiral dynamics and the curvature effect at
critical point.
Discussions and summary.—Our analysis indicates that

the predominant effect on fermions in curved space is the
appearance of a chiral symmetric mass-gap due to the scalar
curvature R, which we call the chiral mass-gap. We have
shown that the mass shift is systematically formulated in a
form of the resummed expansion with respect to the
Riemann and the Ricci curvature tensors. The chiral
mass-gap gives an intuitive explanation for the nature of
the chiral phase transition in curved space; chiral symmetry
tends to get restored with R > 0, while the chiral con-
densate and the chiral transition temperature becomes
larger with R < 0. Importantly, the chiral gap effect also
suggests decoupling between the chiral dynamics and the
quark deconfinement.
In principle, lattice QCD simulations can verify our

conjecture. So far, however, it is not easy to formulate the
problem numerically for a geometry that constantly curves
in space. The difficulty originates from the singularity
associated with polar coordinates that are most convenient
to describe curved geometries. In this sense, therefore, our
analysis may be useful to guide future attempts to simulate
QCD in curved space or specifically in the Schwarzchild
metric.

FIG. 1 (color online). Coupling strength between dynamical
quarks and the gluonic sector quantified through the center
symmetry breaking Δ as a function of dimensionless curvature
R=T2.
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In the future, it will be indispensable to study the gluonic
sector more carefully in curved space, for which lattice
simulations are the most powerful tool, but not necessarily
a unique choice. One might utilize the strong-coupling
expansion or employ a description based on the inverted
Weiss potential [30] with nonflat metric tensors, which
would be an intriguing research subject to pursue.
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