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The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations,
to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A
large number of solutions have been proposed to alleviate this problem. Many are based on the introduction
of a bias potential which is a function of a small number of collective variables. However constructing such
a bias is not simple. Here we introduce a functional of the bias potential and an associated variational
principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This
variational principle can be turned into a practical, efficient, and flexible sampling method. A number of
numerical examples are presented which include the determination of a three-dimensional free energy
surface. We argue that, beside being numerically advantageous, our variational approach provides a
convenient and novel standpoint for looking at the sampling problem.
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Molecular dynamics (MD) and Monte Carlo (MC)
simulations have become indispensable tools in many areas
of science. However, whenever there are kinetic bottlenecks
that lead to the appearance of long-lived metastable states,
the computational cost of sampling the systems configu-
ration space becomes prohibitive. This has lead to an
intensive search for enhanced methods capable of lifting
this severe limitation. One of the oldest such methods,
which is still much in use today, is umbrella sampling [1],
in which an external bias is added to the system to favor
transitions between states separated by kinetic barriers and
to allow them to occur on the time scale of the simulation.
However building such potential is very challenging; many
methods have been devised to this effect [2–9].
Here we present a new and efficient approach to this

problem; we propose a variational method that allows for
the construction of an effective bias potential and that leads
to an accurate determination of the free energy as a function
of a set of chosen collective variables (CVs).
In the following we consider a system described by the

microscopic coordinates R ∈ R3N whose dynamics (e.g.,
MD or MC) at temperature T evolves according to a
potential energy function UðRÞ, and leads to a canonical
equilibrium distribution PðRÞ ¼ e−βUðRÞ=Z where β ¼
ðkBTÞ−1 is the inverse temperature and Z ¼ R

dRe−βUðRÞ

is the partition function of the system. We map the high-
dimensional R space into a much smaller and smoother
d-dimensional space by introducing the set of collective
variables sðRÞ ¼ (s1ðRÞ; s2ðRÞ;…; sdðRÞ) that give a
coarse-grained but physically cogent description of the
system. The appropriate choice of these collective variables
is much discussed in the literature [10] and here we assume
that their selection has been wise. The free energy surface
(FES) associated to the CV set s is defined up to constant as

FðsÞ ¼ −ð1=βÞ log
Z

dRδ(s − sðRÞ)e−βUðRÞ: ð1Þ

The corresponding equilibrium distribution is PðsÞ ¼
e−βFðsÞ=Z and the partition function can be rewritten
as Z ¼ R

dse−βFðsÞ.
We introduce now the following functional of a bias

potential VðsÞ:

Ω½V� ¼ 1

β
log

R
dse−β½FðsÞþVðsÞ�R

dse−βFðsÞ
þ
Z

dspðsÞVðsÞ; ð2Þ

where pðsÞ is an arbitrary probability distribution that is
assumed to be normalized. The second term can thus be
read as the expectation value of VðsÞ over the distribution
pðsÞ. As shown in the Supplemental Material [11], this
functional is convex and invariant under the addition of an
arbitrary constant to VðsÞ, Ω½V þ k� ¼ Ω½V�.
The potential that renders Ω½V� stationary is, within an

irrelevant constant,

VðsÞ ¼ −FðsÞ − ð1=βÞ logpðsÞ ð3Þ

for pðsÞ ≠ 0 and VðsÞ ¼ ∞ otherwise. This stationary
point is also the global minimum of Ω½V� since the
functional is convex. When the optimal bias potential
[Eq. (3)] acts on the system the s values sampled will
be only those for which pðsÞ ≠ 0 and pðsÞ will be their
resulting distribution. This offers the interesting possibility
of selecting the region in CV space to be explored by
appropriately choosing pðsÞ (see below and Supplemental
Material [11]). In more general terms the freedom of
choosing pðsÞ confers a high degree of flexibility to the
method.
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If the CVs are defined in a compact phase space of
volume Ωs, one possible and perhaps natural choice is to
take pðsÞ ¼ 1=Ωs, which leads to a uniform sampling in
CV space as commonly done in other enhanced sampling
approaches. In this case VðsÞ ¼ −FðsÞ modulo a constant,
which is the same relation as is obeyed in the asymptotic
limit by the bias potential in standard metadynamics [5]. If
the CVs are unbound then pðsÞ can be employed to focus
on the range of s to be explored. Another possibility is to
use as pðsÞ

pðsÞ ¼ e−β
0FðsÞ=

�Z
dse−β

0FðsÞ
�
; ð4Þ

where β0 ¼ ½kBðT þ ΔTÞ�−1 and FðsÞ is our target free
energy surface at inverse temperature β as defined in Eq. (1)
above. This is the distribution sampled in well-tempered
metadynamics with a bias factor γ ¼ β=β0 [12]. With this
choice the relation between the bias potential and free
energy becomes identical to the one that asymptotically
holds in well-tempered metadynamics [12,13], VðsÞ ¼
−½1 − ð1=γÞ�FðsÞ. We shall defer to a future publication
the exploration of this intriguing possibility. Finally we
note that it is our belief that an appropriate choice of pðsÞ
and smart usage of the variational flexibility of the bias
potential can be of great help when considering difficult
multidimensional CV spaces. We intend to explore this
further in the future.
To make use of the variational property of Ω½V� we write

the bias potential Vðs;αÞ as a function of the set of
variational parameters α ¼ ðα1; α2;…; αKÞ and then min-
imize the function ΩðαÞ ¼ Ω½VðαÞ� with respect to α. Of
course the search for the minimum will be greatly facili-
tated by the convexity of the functional. From the con-
verged potential Vðs;αÞ we can then estimate FðsÞ directly
from Eq. (3) if the assumed functional form has enough
variational flexibility. Otherwise, we can always estimate
the FES as a function of s, or some other CVs, by
employing the standard umbrella sampling relation

PðRÞ ∝ eβVðsðRÞÞPVðRÞ; ð5Þ

where PVðRÞ is the distribution biased by VðsðRÞÞ (see the
Supplemental Material for further discussion on this
equation [11]). The reweighting can also be performed
before the potential has fully converged, or even on the fly
during the optimization if the biasing potential converges
quickly to a quasistationary state during the optimization
process.
In order to implement the optimization procedure, we

shall need to estimate the gradient Ω0ðαÞ,

∂ΩðαÞ
∂αi ¼ −

�∂Vðs;αÞ
∂αi

�
VðαÞ

þ
�∂Vðs;αÞ

∂αi
�

p
; ð6Þ

and the Hessian Ω00ðαÞ,

∂2ΩðαÞ
∂αj∂αi ¼ βCov

�∂Vðs;αÞ
∂αj ;

∂Vðs;αÞ
∂αi

�
VðαÞ

−
�∂2Vðs;αÞ

∂αj∂αi
�

VðαÞ
þ
�∂2Vðs;αÞ

∂αj∂αi
�

p

; ð7Þ

where h� � �iVðαÞ and Cov½� � ��VðαÞ are the expectation value
and the covariance, respectively, obtained in a biased
simulation employing the potential Vðs;αÞ, and h� � �ip is
an expectation value in the distribution pðsÞ. A natural
approach is to expand Vðs;αÞ in a linear basis set and use
the coefficient of this expansion as variational parameters,

Vðs;αÞ ¼
X
k

αkGkðsÞ: ð8Þ

Given the fact that in general the FES is a rather smooth
function of the CVs, a small number of terms in this
expansion will usually suffice. This is to be contrasted with
metadynamics where a large number of Gaussians are used
to represent VðsÞ. As we shall see below this leads to great
efficiency. In this case the gradient and the Hessian
simplify,

∂ΩðαÞ
∂αi ¼ −hGiðsÞiVðαÞ þ hGiðsÞip; ð9Þ

∂2ΩðαÞ
∂αj∂αi ¼ βCov½GjðsÞ; GiðsÞ�VðαÞ: ð10Þ

The gradient and Hessian terms for the constant term α0 are
zero for any given pðsÞ so we can naturally take the
constant term as zero and drop it from the linear expansion.
Since the gradients and the Hessian are computed

statistically they are intrinsically noisy and one would
need very long sampling times if we were to use them in
conventional deterministic optimization algorithms. Thus
we turn to the vast literature on stochastic optimization
methods [14] and use a recent stochastic gradient descent–
based algorithm [15]. In this algorithm, we consider at
iteration n both the instantaneous iterate αðnÞ and the
averaged iterates ᾱðnÞ ¼ ðnþ 1Þ−1 Pn

k¼0 αðkÞ. The instan-
taneous iterate is then updated using the recursion equation

αðnþ1Þ ¼ αðnÞ − μ½Ω0ðᾱðnÞÞ þ Ω00ðᾱðnÞÞ½αðnÞ − ᾱðnÞ��; ð11Þ

where μ is a fixed step size and the gradient and Hessian
are always obtained by using the averaged iterates ᾱðnÞ,
which amounts to taking a first-order Taylor expansion of
the gradient Ω0ðαðnÞÞ around ᾱðnÞ. As we show below, the
instantaneous iterates αðnÞ fluctuate considerably while their
averages ᾱðnÞ vary smoothly. This leads to a well-behaved
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biasing potential Vðs; ᾱðnÞÞ and to a smoothly converging
estimate of FðsÞ, either directly from Eq. (3) or through
reweighting using Eq. (5). The averaging of the iterates also
allows for a rather short sampling time at each iteration
(∼1 ps in the cases examined here). The choice of the step
size is at present still a matter of trial and error; we expect it
to depend on the system and on the functional form of
Vðs;αÞ. We note that in many cases it may be too costly to
obtain the complete Hessian Ω00ðᾱðnÞÞ so for practical
reasons one can consider only its diagonal part as done
here. In our experience so far this does not seem to cause any
ill effect.
We now turn to exemplifying how the newmethod works

in practice. In the main text we consider only angular CVs,
but in fact any variable can be treated in a similar way
(see Supplemental Material [11]). In this case the natural
choice is to take pðsÞ ¼ 1=ð2πÞd where d is the number
of biased CVs. We expand VðsÞ in a Fourier series,
VðsÞ ¼ P

kαke
iks, and use the expansion coefficients as

variational parameters (see Supplemental Material for
details [11]). With the chosen constant pðsÞ one always
has hVðsÞip ¼ 0 which fixes the zero of VðsÞ during
minimization and facilitates judging the convergence of
the simulation. Each calculation is started with all varia-
tional parameters set to zero, that is Vðs; ᾱð0ÞÞ ¼ 0.
It has become customary to test any new free energy

method on alanine dipeptide in vacuum, and we shall
adhere to this tradition. Conventionally the FES of alanine
dipeptide is described in terms of the two backbone
dihedral angles Φ and Ψ (see Supplemental Material
[11]), but in vacuum only the Φ angle is a slow degree
of freedom while Ψ can be considered as a fast degree of
freedom. Therefore, by biasing onlyΦ one can still obtain a
proper sampling of phase space. In Fig. 1 we show the
evolution of the minimization process when using only the
backbone dihedral angle Φ as a CV. It is seen that in this
case the bias potential VðΦÞ evolves in a manner resem-
bling that of standard metadynamics, filling progressively
all the different minima and smoothly converging to the
reference free energy profile FðΦÞ obtained with metady-
namics. In the same figure we also show two randomly
chosen coefficients in the expansion of VðΦÞ, where we
observe that while their instantaneous values oscillates
greatly their averages converge smoothly. The same con-
vergent behavior is observed in the value of Ω½V� in
Fig. 1(c). We have also performed a conventional calcu-
lation using both backbone dihedral anglesΦ andΨ as CVs
with similar satisfactory results (see Supplemental Material
[11]). Solvating the alanine dipeptide in explicit water and
using the two traditional CVs also leads to gratifying results
(see Supplemental Material [11]).
As noted earlier, in many cases the FESs are rather

smooth functions so one can obtain a good representation
of VðsÞ with only a minimal basis set. In alanine dipeptide,
both in vacuum and in water, we obtain a rather good

description of the FES with only seven basis functions per
CV. We make use of this ability to represent the FES with a
minimal basis set in our next example.
This is the more challenging case of a Ala3 peptide in

vacuum. While its conformations are described by its six
backbone dihedral angles Φ1, Ψ1, Φ2, Ψ2, Φ3, Ψ3 (see
Supplemental Material [11]), only the three Φ angles
suffice as CVs. As we increase the dimensionality of the
CV space the number of variational parameters increases
exponentially with d. To keep the number of variational
parameters small we shall only use a minimal basis set. In
the Ala3 case this leads to use only 342 basis functions.

FIG. 1 (color online). Time evolution of the bias potential
during minimization for alanine dipeptide in vacuum at 300 K.
Only the backbone dihedral angle Φ acts as a CV, and we include
12 basis functions in the expansion of VðΦÞ. (a) The FðΦÞ as
estimated by the negative of the bias potential (for clarity, the
potentials are shifted relative to one another by 25 kJ=mol).
At 5 ns we also compare our variational result with a fully
converged estimate of the FES from well-tempered metadynam-
ics (black dashed line). The two curves are almost indistinguish-
able. (b) Time evolution of the instantaneous (dashed lines) and
average (solid lines) expansion coefficients for the basis functions
cosð2ΦÞ and sinð2ΦÞ. (c) Time evolution Ω½V� estimated by a
running average from the start of the simulation (see Supple-
mental Material [11]).
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With this choice during optimization all three CVs quickly
become diffusive and the bias potential VðΦ1;Φ2;Φ3Þ
converges after 50–100 ns of simulation time.
Despite employing a minimal basis we get a rather good

representation of the FES, as shown in Fig. 2 where we
present a two-dimensional projection of FðΦ1;Φ2;Φ3Þ on
Φ1 and Φ2 (projections for the other CVs can be seen in the
Supplemental Material [11]). Any lack of full variational
flexibility in the bias potential can furthermore be fully
corrected by performing an on-the-fly reweighting during

the optimization process. As observed in Fig. 2 the FES
obtained in this manner is in excellent agreement with
reference results from an extensive 500 ns parallel-tempering
simulation. In the Supplemental Material we show additional
reweighted FESs for other CVs not biased during the
simulation that also are in excellent agreement with the
reference results [11].
While this approach offers a significant improvement

over metadynamics and other similar methods its useful-
ness still depends on an appropriate choice of the CVs. As
in metadynamics, a poor choice of the CVs will manifest
itself in a hysteretic behavior during the optimization
process (see Supplemental Material [11]). However our
variational approach, with its potential for handling many
CVs, can greatly alleviate the problem. A further help in
this direction is the possibility of adding variational
flexibility in the definition of the CVs.
To improve upon the method we can borrow all the

ideas that have been applied to metadynamics, like parallel
tempering [16], multiple walkers [17], or bias exchange [18].
Furthermore, metadynamics itself can be used to sample the
averages needed in Eqs. (6) and (7) by employing a recent
improved reweighting scheme [19]. The sampling power of
the variational approach can thus be further enhanced by
biasing the metadynamics with CVs different from s.
The main result of this Letter is the introduction of the

functional Ω½V� and the practical demonstration of its
usefulness. We believe that there is ample room for
improvement. The optimization procedure presented here
is not necessarily optimal and different systems and CVs
might require different optimization strategies and different
basis sets. We plan to explore a number of alternative
procedures. For instance one could think of setting up an
iterative procedure in which an approximate calculation is
made for F0ðsÞ using Eq. (3) at the early stages of the
calculation. One can then insert into Eq. (2) a new
p0ðsÞ ¼ e−βF0ðsÞ=

R
dse−βF0ðsÞ. The resulting functional is

then optimized and the procedure iterated until at con-
vergence, after k steps, pkðsÞ ¼ e−βFkðsÞ=

R
dse−βFkðsÞ and

VkðsÞ ≈ 0 to the desired accuracy.
These brief discussion on the potential for improvements

and modifications of the scheme is by far not exhaustive
but is meant to indicate some of the future lines of
investigation. In this very first application we are only using
a small fraction of the potentialities of this method; much
more exciting developments are to be expected. We would
also like to point out the potential of our method in the
development of a more rigorous coarse-graining procedure.
Finally we note that the systems considered here are by

necessity simple, as conventionally done when introducing
a completely new method. The strengths and limitations of
our approach will become clearer as it is further developed.
The method has been implemented in a development

version of the PLUMED 2 [20] plug-in and will be made
publicly available in the coming future.

FIG. 2 (color online). The two-dimensional FESs FðΦ1;Φ2Þ
obtained with the variational approach for Ala3 in vacuum at
300 K using the backbone dihedral angles Φ1, Φ2, and Φ3 as CVs
and 342 basis functions in the expansion of VðΦ1;Φ2;Φ3Þ.
(a) FES obtained from a projection of FðΦ1;Φ2;Φ3Þ. (b) FES
obtained with on-the-fly reweighting. (c) Reference results from a
500 ns parallel tempering simulation (eight replicas with an
aggregated simulation time of 4 μs). The color scale of the FESs
is given in units of kJ/mol. All FESs have their minimum value
set to zero and are cut such that regions higher than 8 kBT
(≈ 20 kJ=mol) are not shown. See Supplemental Material for
further details [11].
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