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Kochen-Specker (KS) sets are key tools for proving some fundamental results in quantum theory
and also have potential applications in quantum information processing. However, so far, their intrinsic
complexity has prevented experimentalists from using them for any application. The KS set requiring the
smallest number of contexts has been recently found. Relying on this simple KS set, here we report an input
state-independent experimental technique to certify whether a set of measurements is actually accessing a
preestablished quantum six-dimensional space encoded in the transverse momentum of single photons.
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Introduction.—For any quantum system of a given
dimension d ≥ 3, there is always a set of yes-no tests
for which, no matter how the system is prepared, the
predictions of quantum theory cannot be reproduced with
any theory that assumes that the measurement results are
predefined and independent of other compatible measure-
ments [1,2]. These sets, called Kochen-Specker (KS) sets
[3], provide a proof of the impossibility of explaining
quantum theory with noncontextual hidden variables [1,2]
and are also important for other fundamental results in
quantum theory [4–12]. In addition, KS sets have poten-
tial applications in quantum information processing,
since they are essential for nonlocal games [13], games
with quantum state-independent advantage [11,13,14],
quantum key distribution secure against attacks based
on classical simulations of complementarity [15,16],
single-shot entanglement-assisted zero-error communica-
tion [17,18], and state-independent dimension witnessing
with sequential measurements [19]. However, so far,
the intrinsic complexity of KS sets has prevented the
experimental development in this direction.
The original set found by Kochen and Specker consists

of 117 tests on a quantum system of dimension d ¼ 3 that
can be grouped in 132 contexts (i.e., sets of mutually jointly
measurable tests) [2]. The smaller the number of contexts a
KS set has, the easier it is to observe the contrast between
the predictions of quantum theory and those of noncon-
textual hidden variables. In this sense, the discovery of
simpler KS sets [20–22] has allowed the first experimental
investigations [11,23].
Remarkably, the KS set with the smallest number of

contexts has been found only very recently. It consists of a
set of 21 tests on a quantum system of dimension d ¼ 6 that
can be grouped in seven contexts [24]. In practical terms,

this set (hereafter called KS21) provides a shortcut for
applying KS sets for quantum information processing.
Here we show how KS sets, and specifically KS21, can

be used to test whether a set of measurements is actually
accessing a preestablished d-dimensional quantum system
(e.g., the six-dimensional quantum system defined by the
six lowest energy levels of the Er3þ ion). In particular,
the problem we address is the following: Bob receives
from Alice preestablished d-dimensional quantum systems
prepared in an unknown state, possibly noisy. Bob has to
check whether his measurements actually access Alice’s
d-dimensional quantum systems. In particular, Bob wants
to be sure that his results cannot be produced by measure-
ments on classical systems or different quantum systems
(e.g., six energy levels of a different ion). We therefore
show a direct application of KS sets: the certification of
measurement hardware for high-dimensional quantum
information processing.
These KS-based measurement dimension witnesses

complement the device-independent dimension witnesses
(DI-DWs) introduced in Ref. [25] and experimentally
implemented recently in Refs. [26–28]. KS-based meas-
urement dimension witnesses differ from DI-DWs in many
senses: DI-DWs’ purpose is to assess the minimum,
classical or quantum, dimension that a set of preparations
actually produce. DI-DWs do not make any assumption
on the preparation and measuring devices’ inner workings,
but cannot distinguish preparations of quantum systems
of dimension d from preparations of classical systems of
dimension larger than d, and require Alice to send, at least,
dþ 1 different preparations.
The protocol to certify whether Bob’s set of measure-

ments is accessing Alice’s d-dimensional quantum system
is the following. Bob starts by building a measurement

PRL 113, 090404 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

0031-9007=14=113(9)=090404(5) 090404-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.090404
http://dx.doi.org/10.1103/PhysRevLett.113.090404
http://dx.doi.org/10.1103/PhysRevLett.113.090404
http://dx.doi.org/10.1103/PhysRevLett.113.090404


device to test, on the quantum systems that he thinks Alice
will codify information, each of the yes-no tests Πi of a
d-dimensional KS set. Then, he checks that his devices
produce results that satisfy the relations of pairwise mutual
exclusivity of the KS set. That is, Bob checks that, for any
pair of mutually exclusive tests (Πi, Πj), his measurements
satisfy that, if the system is in the state corresponding to
the yes result for Πi, then the result of Πj is always no, and
vice versa. Notice that these relations of exclusivity may
also be produced with measurements on classical or
different quantum systems.
To certify that his measurements access Alice’s

d-dimensional quantum systems, when he receives Alice’s
systems, Bob measures on them the frequency with which
each Πi gives result yes. This allows him to reach a
conclusion based on the following results. (i) The relations
of exclusivity of a d-dimensional KS set can only
occur with tests on classical or quantum systems of
dimension d or higher. (ii) For any d-dimensional KS
set, there is a noncontextuality (NC) inequality violated by
any d-dimensional quantum state by the same amount [8].
(iii) The noncontextual bound and the maximum quantum
value of any NC inequality are, respectively, given by the
independence number αðGÞ and the Lovász number ϑðGÞ
of the NC inequality’s exclusivity graph G. This graph is
defined as the one in which, when the correlations are
expressed as a positive combination Σ of probabilities, tests
are represented by vertices and mutually exclusive tests by
adjacent vertices [29,30]. Therefore, if Bob has confirmed
the relations of the exclusivity, the experimental value of Σ
should be ϑðGÞ for any quantum state Alice may have
prepared, but only if Bob’s measurements are accessing
Alice’s d-dimensional quantum system. Otherwise, the
experimental value for Σ would be smaller than or equal
to αðGÞ, even in the case Bob’s measurements are accessing
a quantum system, but not the right one. For example, if
Alice is encoding d-dimensional quantum information in
the transverse momentum state of photons of a certain
wavelength, but Bob’s measurements do not work properly
for that wavelength, then Bob will observe a value smaller
than or equal to αðGÞ.
In this work we exploit the simplicity of KS21 to

experimentally demonstrate the usefulness of KS sets to
certify that our measurements are actually accessing the
quantum six-dimensional space encoded in the transverse
momentum state of single photons. For that, we will use the
following NC inequality:

Σ ¼ 2 ×
X21

i¼1

PðΠi ¼ 1Þ ≤
NCHV

6; ð1Þ

where PðΠi ¼ 1Þ is the probability of obtaining result 1
(yes) when performing the test Πi ¼ jviihvij, where jvii
with i ¼ 1;…; 21 are the KS states introduced in Ref. [24].

≤
NCHV

6 indicates that the upper bound for Σ is 6 for any

noncontextual hidden variable theory. In contrast, in
quantum theory the value of Σ is 7, regardless of the
quantum state of Alice’s six-dimensional system.
Description of the experimental setup.—In order to

encode six-dimensional quantum information we employ
the linear transverse momentum of single photons. In this
case, a six-dimensional quantum state is created by defin-
ing six path possibilities for the photon transmission
through a diffractive aperture. To produce each of the
21 KS states of KS21, we use a set of six parallel slits
dynamically generated using a sequence of two spatial light
modulators (SLM). SLMs are optical elements usually
composed of a liquid crystal display matrix and linear
polarizers [31,32]. For this experiment, we further opti-
mized the configuration of the SLM by resorting to quarter
wave plates (QWP) placed between the linear polarizers.
This was done to cover the phase modulations required for
the generation of the KS21 states which have complex
components. In fact, KS21 is the only critical (i.e., that
does not contain simpler KS sets) d-dimensional KS set
known that cannot be implemented in a d-dimensional real
Hilbert space.
If the transverse coherence length of the beam is

larger than the distance separating the first and the
sixth slit, the state of the transmitted photon is given by
[33,34]

jψi ¼ 1ffiffiffiffi
C

p
Xl6

l¼−l6

ffiffiffi
tl

p
eiϕl jli; ð2Þ

where l6 ¼ 5=2 and jli represents the state of the photon
transmitted by the lth slit [33]. tl (ϕl) is the transmissivity
(phase) defined for each slit and C the normalization
constant. Our slits are 64 μm wide and have a separation
between them of 128 μm. The advantage of using SLMs to
define slits is that they allow us to control tl and ϕl,
independently for each slit modulated. The versatility of
SLMs has been proven to be crucial for fundamental inves-
tigations of quantum information with high-dimensional
systems [26,34–40].
The experimental setup is depicted in Fig. 1. It consists

of two main blocks, the initial state preparation and the
projection stages. The single photons used in the experi-
ment are actually weak coherent states produced from
heavily attenuated optical pulses. For the pulse generation,
an acousto-optic modulator (AOM) is placed at the output
of a continuous-wave diode laser at 690 nm. The weak
coherent states are finally generated with an optical
attenuator. As we mentioned, the amplitude and phase
modulations required for the generation of the 21 KS
vectors are obtained with a combination of two SLMs,
SLM1 and SLM2. SLM1 controls the real part of the
coefficients of the generated states, while SLM2 their
phases [39]. The SLM2 is located at the image plane of
the first one.
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The generated state is then propagated through an
imaging telescoping set of lens to the projection stage.
The function of this stage is to project the transmitted state,
onto any of the 21 KS set states, allowing us to implement
the corresponding 21 yes-no questions. Two SLMs are
again used in the same configuration used in the state
preparation stage, SLM3 for amplitude and SLM4 for
phase modulation. A quantum random number generator
(RNG) IDQUANTIQUE QUANTIS is used to randomly choose
one of 21 measurement projections to be applied. The
projection is concluded after the output light from SLM4 is
focused with a lens and detected by a pointlike avalanche
single-photon detector (APD) placed at the center of the
focal plane [37,41,42]. The pointlike detector is built with a
10 μm diameter pinhole placed in front of the APD. In this
configuration, the probability of a single-photon detection
is proportional to jhψ jKSiij2 [37], with i ¼ 1;…; 21 and
where jψi is the prepared state and jKSii is the KS state
onto which the measurement projects.
The entire experimental setup is actively controlled by

field-programmable gate array (FPGA) electronics in order
to automate the measurements. A single FPGA unit is used
to send trigger pulses to the AOM at a repetition rate of
30 Hz in order to create the faint optical pulses. The same
FPGA is also used to synchronously change the masks in
SLM3 and SLM4 for each pulse, and to record whether or

not a detection occurred for this pulse. The unit then keeps
track of all the detections for each combination of jψi and
jKSii. From the statistics of the recorded results one can
obtain the value of Σ appearing in the inequality (1).
Methods and results.—The noncontextual bound of

the NC inequality (1) is derived under the assumption that
the states have certain orthogonality relations and, in
particular, that the probability of obtaining a yes answer
when the system is prepared in an orthogonal state is zero.
However, under real experimental conditions, it is expected
that the measured probabilities corresponding to these
orthogonal projections will not be exactly zero. This
originates from imperfections inherent to any experiment.
These imperfections must be taken into account to properly
correct the noncontextual limit of inequality (1). As
explained in Ref. [11], this can be done by testing which
is the fraction of experiments in which a “wrong” result is
observed. In our case, we obtained that this fraction is, after
averaging over all the orthogonalities in the KS set,
ε̄ ¼ 0.0151� 0.0004. Figure 2 shows how this fraction
differs for the orthogonalities of each state jKSii (in KS21
all states have the same number of orthogonalities). Since Σ
is the sum of 21 probabilities, one can easily calculate the
corrected noncontextual bound assuming that the bound of
the original inequality (1) is only valid for a fraction (1 − ε̄)
of the experiments, and assuming the worst-case value for
the other fraction. This gives an upper bound for Σ equal to

0.0100 0.0003

0.0162 0.0003

0.0063 0.0002

0.0174 0.0004

0.0140 0.0003

0.0178 0.0003

0.0163 0.0003

0.0102 0.0003

0.0118 0.0002

0.0151 0.0004

0.0149 0.0003

0.0139 0.0005

0.0156 0.0005

0.0144 0.0003

0.0183 0.0005

0.0181 0.0005

0.0192 0.0002

0.0148 0.0003

0.0191 0.0004

0.0168 0.0005

0.0178 0.0004

0.0151 0.0004

0.02 0.04

KS1

KS2

KS3

KS4

KS5

KS6

KS7

KS8

KS9

KS10

KS11

KS12

KS13

KS14

KS15

KS16

KS17

KS18

KS19

KS20

KS21

FIG. 2 (color online). Exclusivity tests performed for the 21 KS
states. In these tests, the prepared state and the measured states
are KS states that are supposed to be orthogonal. The KS states
are numbered as they appear in Eq. (1) in Ref. [24]. The dashed
line shows the parameter ε̄ defined in the main text.

FIG. 1 (color online). Experimental setup. The state preparation
stage consists of an attenuated single-photon source and of two
SLMs used to encode one of the 21 KS states on the linear
transverse momentum of a single photon. These SLMs are
connected to a personal computer (PC) which, for clarity’s sake,
is not shown in the figure. The measurement projection stage
employs two other SLMs to randomly project the incoming state
onto one of the 21 KS states. An FPGA unit controls the entire
experimental setup for testing the NC inequality. See main text
for details.
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6ð1 − ε̄Þ þ 42ε̄ ¼ 6.55 [11], which is still lower than the
quantum value for the case of an ideal experiment, which is
7. Notice that the same reasoning applies to the quantum
value for an ideal case, yielding upper and lower bounds to
it. This procedure is crucial to correctly estimate the exp-
ected result of the experimental certification of whether the
hardware under test is accessing the correct d-dimensional
quantum system.
We then proceed to test the NC inequality (1) using as

initial state each one of the 21 KS states jKSii. For each
initial KS state, a measurement run consisting of 1.0 × 106

faint pulses is performed. For each pulse, the random
measurement projections are applied. Then we calculate
the value of Σ for that particular KS state from the recor-
ded results. The final results are shown in Fig. 3. We note
that, for every initial state, the NC inequality is violated
essentially by the same amount and that the observed
violations are in very good agreement with the quantum
prediction, even when experimental imperfections are taken
into account.
An example of the measurement of Σ as a function of the

number of pulses sent is shown in Fig. 4. It allows us to
visualize how Σ converges to its final value. The observed
fluctuations in the beginning of the measurement procedure
are mainly the result of statistical fluctuations. One can
observe the convergence of the results as the statistical

variations decrease when the number of detections increase
with the elapsed time. The error bars are calculated
considering a Poissonian distribution for the photon
statistics.
Finally, we complete the demonstration of the quantum

state independency of the violation of inequality (1) by
testing Σ for another five different initial states that do not
belong to the KS set. The results of these tests are
presented in Fig. 5. Again, they show a clear violation
of inequality (1) in agreement with the quantum predic-
tion, even when imperfections are taken into account.
Notice that the observed value is essentially independent
on the initial state of the system and the amount of white
noise added.
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FIG. 3 (color online). Experimental results for Σ, defined in
Eq. (1), using as initial states each of the KS states of KS21. The
NC inequality (1) is equally violated for all the states tested.
N-Context Limit (Ideal) indicates the noncontextual bound in the
ideal case in which ε̄ ¼ 0. N-Context Limit indicates the bound
when the actual value of ε̄ obtained in the exclusivity tests
is taking into account. Quantum Limit (Ideal) indicates the
expected quantum result when measurements access the correct
d-dimensional quantum system in the ideal case in which ε̄ ¼ 0.
Quantum Lower (Upper) Limit indicates the limits expected
when measurements access the correct d-dimensional quantum
system and when the actual value of ε̄ is taken into account.

Quantum Upper Limit 

N-Context. Limit

N-Context. Limit (ideal)

Quantum Lower Limit 

Quantum Limit (ideal)

0.0 0.25 0.5 0.75 1.0

6.0

6.5

7.0

7.5

6.0

Pulses Sent 106

E
xp

er
im

en
ta

l

FIG. 4 (color online). Value of Σ, defined in Eq. (1), as a
function of the number of pulses sent, while using jKS7i ¼
ð0; 0; 0; 0; 0; 1Þ as initial state.
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FIG. 5 (color online). Demonstration of the quantum
state independency of the violation of inequality (1) for the
following states (normalization factors are omitted for sim-
plicity): (i) jϕ1i ¼ ð1; 1; 1; 1; 1; 1Þ, (ii) jϕ2i ¼ ð1; 0; 0; 0; 1; 0Þ,
(iii) a completely mixed state ρ ¼ 1=6, (iv) ρw¼30%

jKS9i ¼
ð1 − wÞjKS9ihKS9j þ w1=6, which is a partial mixture
composed of the pure state jKS9i ¼ ð0; 1; 0; 1;ω;ω2Þ, where
ω ¼ e2πi=3, and 30% of added white noise, where w is the
amount of white noise and 1 is the identity matrix in dimension
6, and (v) jKS9i.
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Conclusions.—We have shown that, beyond their key
role for proving fundamental results in quantum theory, KS
sets can be extremely useful for practical quantum infor-
mation processing involving high dimensional quantum
systems. Specifically, by using six-dimensional quantum
systems encoded in the transverse momentum of single
photons, we have experimentally implemented for the first
time the KS set that has the smallest number of contexts.
We have used this KS set to illustrate a simple and
efficient method to certify whether a set of measurements
is actually accessing a previously established quantum
six-dimensional system rather than a classical system or
a different quantum system. This technique is of special
relevance for quantum information processing due to the
increasing complexity required for preparing and measur-
ing quantum systems of high dimensions.
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