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The isolation of energetically persistent scattering pathways from the resonant manifold of an open
electron billiard in the deep quantum regime is demonstrated. This enables efficient conductance switching
at varying temperature and Fermi velocity, using a weak magnetic field. The effect relies on the interplay
between magnetic focusing and soft-wall confinement, which rescale the scattering pathways and
decouple quasibound states from the attached leads, the field-free motion being forwardly collimated.
The mechanism proves robust against billiard shape variations and qualifies as a nanoelectronic current
control element.
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The control of charge flow in low-dimensional quantum
systems lies at the heart of nanoelectronic circuit design,
posing the challenge to understand and manipulate the
mechanisms that enable its realization. Prominent candi-
date elements for conductance control are open electron
billiards [1–6], which can be patterned to almost arbitrary
shapes well below the electronic mean free path and
coherence length [7–9]. Billiard systems have long served
as a convenient platform to study quantum interference
phenomena such as Fano resonances [3,5,10,11], but also
the quantum-to-classical crossover [12–14] and signatures
of quantum chaos [15–17]. Their transport properties are
drastically altered by an externally applied magnetic field
[18–26], and therefore, they dominate the intense inves-
tigation of coherent magnetotransport in the mesoscopic
regime, where quantum interference meets and overlaps
with the notion of oriented paths. Specifically, generalized
Aharonov-Bohm (AB) oscillations [27] from phase modu-
lation of interfering states [19,23,28] combine with
the Lorentz deflection [24,29,30] of electrons up to the
formation of edge states [19,24,31].
An intriguing question is how to controllably separate

path-mediated magnetotransport dynamics from (resonant)
interference effects in a regime where the two strongly
overlap, that is, at wavelengths comparable to the system
size. From an experimental viewpoint, the magnetic field
provides a unique macroscopic handle on those mesoscopic
processes determining the conductance of the system, and
the challenge is to find a way to control them under
“comfortable” conditions. In other words: How can a weak
magnetic field switch the current flow through an electron
billiard with many levels, at low bias, finite temperature,
and over a broad Fermi level variation? The answer lies in
identifying and designing energetically robust transport
mechanisms which respond reliably to changes in the field
and simultaneously stay isolated from resonance-induced
quantum fluctuations.

In the present Letter, we realize the above scenario in
an open billiard with “soft wall” potential [see Figs. 1(a)
and 1(a′)], the experimental setup in mind being a quantum
dot with steep boundary potential [8,9] supplied with
additional peripheral gates [7]. The combination of elon-
gated lateral shape and soft wall is shown to control
magnetotransport by isolating required scattering pathways
from resonant levels. For B ¼ 0, the incoming electrons are
directed forwardly causing high transmission, whereas, at a
switching field B ¼ Bs, they are focused [31] into a
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FIG. 1 (color online). System setup and sketch of pathways.
(a) Billiard defined by hard-wall confinement (solid line) and
soft-wall potential Vðx; yÞ decreasing along elliptic contours to
zero (dotted contour), opening up along y ¼ 0 to attached leads of
width w. (a0) Cross section at x ¼ 0 for linear wall potential, with
central contour at the threshold of the first propagating channel.
(b) Without the soft wall, a magnetically backscattered pathway
(cyclotron radius R1, red arrows) turns into a transmitted pathway
(R2 < R1, orange arrows) for sufficiently lower energy, while (c)
backscattering would be retained for a correspondingly smaller
billiard. For appropriate V in (a), similar backscattered paths can
persist in varying energy E for common field Bs, with forward
propagation favored for B ¼ 0 (blue arrow).
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completely backscattered pathway which becomes geo-
metrically “rescaled” in energy [see Fig. 1(a)]. In both
cases, the crucial role of the soft wall is to create
energetically persistent scattering pathways while decou-
pling quasibound states from the openings. As a result, the
setup enables efficient finite-temperature current switching
via a weak magnetic field, for varying Fermi energy.
With decohering electrodes implemented by attached

semi-infinite leads, the effective (energy dependent and
non-Hermitian [32]) Hamiltonian of the open system is
represented on a tight-binding lattice, and the transmission
function TðEÞ is computed via an extended recursive Green
function scheme [24,33,34]. This allows for efficient and
accurate transport calculations in a highly resolved param-
eter space for the considered low-energy regime. The
conductance G at Fermi energy EF and temperature Θ is
then obtained from TðEÞ within the Landauer-Büttiker
framework [32]. Upon an excitation in the leads, the Green
function further provides the local density of states (LDOS)
ρ as well as the scattering wave function [32] which in turn
yields the probability current density j [35,36]. The choice
ℏ¼e¼m¼a0≡1 fixes the units of energy E0 ¼ ℏ2=ma20
and magnetic field strength B0 ¼ ℏ=ea20 for given effective
mass m and lattice constant a0.
The transmission through the billiard with and without

the soft wall is shown in Fig. 2 for varying B and incoming
momentum κ. Qualitatively common features in the two
TðB; κÞ maps are isolated edge state peaks [31] at high B
and low κ (lower right corner) as well as stripelike
interference patterns from multiple edge states [19] for
higher κ (lower diagonal half), which become less pro-
nounced and are eventually destroyed by generalized AB
interference of spatially extended states [23,28] at lower B
(upper diagonal half). The slope of the characteristic
reflection and transmission stripes portrays the formation
of skipping [31] orbits within the billiard. Without the soft
wall [Fig. 2(b)], the approximate commensurability
between the skipping intervals and the (half) length of
the boundary is preserved along stripes of positive slope in
the (B, κ) plane on which high reflection (transmission)
occurs. The soft wall causes the stripes to bend around the
middle of the channel [Fig. 2(a)], which shows that the
finite potential effectively reduces the size of the billiard
area at low κ: A stronger focusing field is needed to
maintain the high or low T for decreasing κ, and con-
sequently, the map features broaden along the B axis.
In the present context, the extraordinary effect of the soft

wall is manifest in the low-B regime, where the very
complex dynamics generally induces highly irregular
interference contributions: At a relatively weak field
B ¼ Bs, backscattering persists over the whole channel
and completely dominates the background transmission
spectrum, forming a broad and vertical reflection stripe in
the TðB; κÞ map, upon which only very narrow Fano
resonances are superimposed [see Fig. 2(a)]. Indeed,

background transmission does not set in again until the
second channel threshold. This remarkable feature, which
is absent without the soft wall [see Fig. 2(b)], is reversed
when the field is turned off: For B ¼ 0, a highly trans-
mitting background is only slightly perturbed by narrow
resonant dips. The cuts through the TðB; κÞ maps in Fig. 2
highlight the above behavior. At finite temperature, the
dips (peaks) at B ¼ 0 (B ¼ Bs) are effectively washed
away by the thermal contribution of the highly transmitting
(reflecting) nonresonant states around the Fermi level. This
is seen in Figs. 3(a) or 3(a′), where the conductance is kept
close to unity or zero, respectively, over a broad range in EF
even at considerable thermal width kBΘ.
To understand the influence of the proposed type of soft

wall potential, and the induced mechanism underlying
conductance control, let us analyze the electronic scattering
states responsible for high (low) background transmission

(a)

(b)

FIG. 2 (color online). Transmission T (black ¼ 0 to white ¼ 1)
for varying magnetic field B (or flux φ) and scaled incoming
momentum κ ¼ ffiffiffiffiffiffi

2E
p

w=π within the first open channel, for
(a) the soft-wall potential of Fig. 1(a′) with ða; b; d; wÞ ¼
ð84; 128; 96; 32Þa0, and (b) the same billiard without the
soft wall. B is in units of 10−3B0. For a0 ¼ 2 nm,
B0 ¼ ℏ=ea20 ¼ 164.55 T. Right panels: cuts through TðB; κÞ-
maps at B ¼ 0 (○) and Bs ¼ 0.63 × 10−3B0 (⊙) or φs ¼ 7.32φ0

(flux quantum φ0 ¼ h=e).
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in the absence (presence) of the field. Figs. 3(b) and 3(b′)
display the LDOS ρðx; y; κÞ for electrons incident in the left
lead of the billiard at sample nonresonant energies.
For B ¼ 0 [Fig. 3(b)], we see that the effect of the finite

potential is to direct themotion along the axis connecting the
leads, thus enhancing transmission. This is achieved in a
twofold way: (i) The special shape of the potential around
the lead openings, forming a stub of free motion into the
billiard as a prolongation of each lead, suppresses the
transversal component of the electronic local momentum,
thereby collimating [31] the motion in forward direction (in
other words, the soft wall reduces the diffractive effect of the
hard-wall lead openings); (ii) owing to its elliptic contour,
the soft wall depletes the scattering state along the billiard
boundary and further confines it into an elongated profile
leaking into both leads. For the same reason, states
corresponding to distinct Fano resonances become well
decoupled from the leads and, thus, isolated from a
significant (subtractive) contribution to the overall transport.
For B ¼ Bs [Fig. 3(b′)], the scattering state profiles reveal

the key role of the soft wall in energetically sustaining the
backscattered pathways. Again, the mechanism is twofold.
(i) States strongly coupled to the incoming lead are now
magnetically focused onto the billiard boundary, so that the
electron follows a pathway which is backscattered after
“bouncing” twice off the boundary [20,37]. The soft wall
here crucially comes to the aid of conductance suppression
by rescaling the dynamics and thus keeping the nonreso-
nant backscattered pathway energetically invariant:
With increasing (decreasing) kinetic energy, the electron

undergoes weaker (stronger) Lorentz deflection at constant
B ¼ Bs, but at the same time penetrates more (less) into the
soft wall potential towards the boundary [compare outer
lobes of ρ in Fig. 3(b′); 1,2,3]. The soft wall thus effectively
increases the billiard size with energy, and as a result, the
magnetically focused, backscattered pathway persists over
the whole channel. (ii) As in the field-free case, any long-
lived resonant states are further confined away from both
leads by the soft wall, rendering the corresponding Fano
peaks extremely narrow.
The actual electronic motion in the billiard is depicted in

Figs. 3(c) and 3(c′) through its probability current density
jðx; y; κÞ. With or without the magnetic field, the wave
nature of transport leads to multiple complex vortex
structures covering the billiard, which change dramatically
in energy. Nevertheless, we see that the parts of the flow
with higher density indeed favor motion along the above
described pathways needed for conductance switching in
varying EF, that is, a forward collimated current for B ¼ 0
and a circulating backscattered current for B ¼ Bs.
It should be pointed out that, although the soft wall

succeeds in geometrically rescaling the low-field (two-
bounce) backscattered pathway, the motion is, in general,
drastically modified from that in a corresponding purely
hard-wall billiard with spectral boundary reflection [25]. In
the present case, the further into the soft wall the electron
reaches, the more it is magnetically deflected due to its
reduced (local) momentum, and the motion is further
affected by continuous electrostatic refraction [38].
These effects are enhanced at stronger fields which localize

(a) (b)

(c)

(a′) (b′)

(c′)

FIG. 3 (color online). (a) Dimensionless conductance g ¼ G=G0 (with quantumG0 ¼ 2e2=h) around the first open channel for B ¼ 0,
for the same billiard as in Fig. 2(a), at different temperatures Θ. For a0 ¼ 2 nm and m ¼ 0.069 me (GaAs=AlGaAs interface):
E0 ¼ 276 meV and Θ ¼ 0; 0.5; 1.0; 3.0 K. Scaled (b) LDOS

ffiffiffi
ρ

p
and (c) current density

ffiffiffiffiffij jjp
shown at momenta indicated by vertical

lines in (a), for electrons incident in the left lead. (a0, b0, c0) Same as above, but for B ¼ Bs.
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the scattering states closer to the boundary over longer parts
(unlike the two-bounce paths, which predominantly enter
the wall radially). Therefore, such higher order (four-
bounce, six-bounce, etc.) backscattered pathways [20,39]
cannot persist over large energy intervals for the same
potential. Indeed, in Fig. 2(a), vertical reflection stripes
tend to form also at higher field strengths (B=B0 ≈ 1.8; 2.2,
etc.), but are eventually tilted or destroyed as energy varies.
Switching efficiency is thus restricted to smaller κF-range
and lower Θ at these fields.
Having demonstrated and explained the proposed

switching mechanism, we finally analyze the impact of
setup variations. In Figs. 4(a) and 4(a′), the channel-
averaged transmission T ¼ R

2
1 TðκÞdκ, a simple estimate

of the overall transmittivity, is shown for varying lateral
shape of the billiard. The substantial overlap between
high-TðB ¼ 0Þ and low-TðB ¼ BsÞ areas indicates the
robustness of the switching effect against alteration of the
dot shape. For a chosen shape, Figs. 4(b′), 4(c′), and 4(d′)
show the switching contrast Δg ¼ gðB ¼ 0Þ − gðB ¼ BsÞ
at a reference broadening kBΘ for different soft wall profiles,
including ones [4(d)] that simulate a concrete experimental
setup [7–9]. Note that the high switching efficiency relies on
the enhanced gðB ¼ 0Þ and suppressed gðB ¼ BsÞ of a
single and relatively large billiard (of area≫w2) containing
many resonant levels (>130 within the first channel at
B ¼ 0) isolated from the leads, and is achieved for a broad
variety of soft wall profiles at substantial thermal width [41].
The optimal switching field Bs generally increases with the
steepness of the wall potential, in accordance with the
stronger confinement of low-energy states. Further,
optimal switching [maximal Δg, see arrows in Figs. 4(b′),
4(c′), and 4(d′)] can be adjusted to different EF by changing
the soft wall parameters. For certain setups [dotted line
in 4(d), corresponding to dotted and dashed-dotted lines
in 4(d′)], energy-persistent backscattering (large Δg) occurs
for distinct Bs-values along separate parts of the channel,
meaning that optimal EF for switching can be magnetically
tuned in this case.
The experimental realization of the proposed switching

device is feasible, e.g., in Ga[Al]As heterostructures by a
combination of local oxidation techniques with optical or
electron-beam lithography [7–9]. This provides a high
precision in lateral dot shape with steep soft-wall potential
corresponding to a depletion length ∼15 nm [8]. The
quantum dot can be tuned by additional top or planar
gates [7,8], and large electron mean free paths are achiev-
able at low temperature (e.g., 3–5 μm at 4.2 K [9]), which is
important in order to maintain as high a degree of
ballisticity as possible [42]. Since the proposed switching
device consists of a single dot, its fabrication is also
facilitated below the electronic coherence length above
Θ ∼ 1 K [7,31]. Even in the presence of (weak) dephasing,
though, the desired switching effect should in fact be
enhanced, since it relies on the suppression of resonant

interference: In similarity to the thermal averaging taken
into account, dephasing would attenuate the Fano extrema
[43] and thus contribute to the overall high versus low
conductance profile needed for robust switching.
In conclusion, we have demonstrated how to isolate the

magnetically controllable scattering continuum from the
manifold of resonant levels of a many-level electron
billiard, persistently in energy. The underlying mechanism
relies on the combined action of an elongated (elliptic)
billiard boundary and a designed soft-wall potential, which
together decouple quasibound states from the attached
leads while simultaneously directing forward field-free
transport or geometrically rescaling magnetically deflected,
backscattered paths. The proposed setup constitutes an
efficient and robust conductance switching device operat-
ing at finite temperature, weak magnetic field, and over
broad Fermi level variation, and is realizable with current
experimental techniques.

The authors are thankful to P. Giannakeas for valuable
discussions.

[1] I. V. Zozoulenko and K.-F. Berggren, Phys. Rev. B 56, 6931
(1997).

[2] R. G. Nazmitdinov, K. N. Pichugin, I. Rotter, and P. Šeba,
Phys. Rev. B 66, 085322 (2002).

(a)

(b) (c) (d)

(a′)

(b′) (c′) (d′)

FIG. 4 (color online). (a), (a0): Channel-averaged transmission
for varying midwall semiaxes a and b of the billiard in Fig. 1 with
d ¼ 96 a0, at (a) B ¼ 0 and (a0) B ¼ Bs. Dotted lines indicate the
geometry ða; bÞ ¼ ð128; 84Þa0 chosen in Figs. 2, 3, and below.
(b), (c), (d): Cross section Vðx ¼ 0; yÞ for different (b), (c) linear
and (d) parabolic (with Wood-Saxon-type [40] boundary, thin
dashed line) soft wall profiles. (b0), (c0), (d0): Corresponding
switching contrastΔg at kBΘ=E0 ¼ 0.312 × 10−3 (Θ ¼ 1.0 K for
a0 ¼ 2 nm, m ¼ 0.069 me) for optimal fields Bs within the first
open channel (threshold at vertical lines). Dashed-dotted line in
(d0) corresponds to dotted profile in (d) for alternative Bs. Arrows
indicate each curve’s maximum. Lengths, energies, and fields are
in units of a0, 10−3E0, and 10−3B0, respectively.

PRL 113, 086802 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

086802-4

http://dx.doi.org/10.1103/PhysRevB.56.6931
http://dx.doi.org/10.1103/PhysRevB.56.6931
http://dx.doi.org/10.1103/PhysRevB.66.085322


[3] B. Weingartner, S. Rotter, and J. Burgdörfer, Phys. Rev. B
72, 115342 (2005).

[4] A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Phys. Rev. B
73, 235342 (2006).

[5] E. R. Racec, U. Wulf, and P. N. Racec, Phys. Rev. B 82,
085313 (2010).

[6] S. Rotter, P. Ambichl, and F. Libisch, Phys. Rev. Lett. 106,
120602 (2011).

[7] A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W.
Wegscheider, and M. Bichler, Phys. Rev. B 63, 125309
(2001).

[8] T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W.
Wegscheider, and M. Bichler, Physica (Amsterdam) 9E,
84 (2001).

[9] V. I. Borisov, V. G. Lapin, V. E. Sizov, and A. G.
Temiryazev, Zh. Tekh. Fiz. 37, 85 (2011) [Tech. Phys. Lett.
37, 136 (2011)].

[10] U. Fano, Phys. Rev. 124, 1866 (1961).
[11] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev.

Mod. Phys. 82, 2257 (2010).
[12] H. Schomerus and J. Tworzydło, Phys. Rev. Lett. 93,

154102 (2004).
[13] F. Aigner, S. Rotter, and J. Burgdörfer, Phys. Rev. Lett. 94,

216801 (2005).
[14] S. Rotter, F. Aigner, and J. Burgdörfer, Phys. Rev. B 75,

125312 (2007).
[15] M. C. Gutzwiller, Chaos in Classical and Quantum

Mechanics (Springer-Verlag, New York, 1990).
[16] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.

52, 1 (1984).
[17] Ph. Jacquod and R. S. Whitney, Phys. Rev. B 73, 195115

(2006).
[18] I. V. Zozoulenko, A. S. Sachrajda, C. Gould, K.-F.

Berggren, P. Zawadzki, Y. Feng, and Z. Wasilewski, Phys.
Rev. Lett. 83, 1838 (1999).

[19] S. Rotter, B. Weingartner, N. Rohringer, and J. Burgdörfer,
Phys. Rev. B 68, 165302 (2003).

[20] R. Brunner, R. Meisels, F. Kuchar, R. Akis, D. K. Ferry, and
J. P. Bird, Phys. Rev. Lett. 98, 204101 (2007).

[21] D. Buchholz, P. Drouvelis, and P. Schmelcher, Europhys.
Lett. 81, 37001 (2008).

[22] C. Payette, G. Yu, J. A. Gupta, D. G. Austing, S. V. Nair, B.
Partoens, S. Amaha, and S. Tarucha, Phys. Rev. Lett. 102,
026808 (2009).

[23] C. Morfonios, D. Buchholz, and P. Schmelcher, Phys. Rev.
B 80, 035301 (2009).

[24] C. Morfonios, D. Buchholz, and P. Schmelcher, Phys. Rev.
B 83, 205316 (2011).

[25] N. Aoki, R. Brunner, A. M. Burke, R. Akis, R. Meisels,
D. K. Ferry, and Y. Ochiai, Phys. Rev. Lett. 108, 136804
(2012).

[26] V. Kotimäki, E. Räsänen, H. Hennig, and E. J. Heller, Phys.
Rev. E 88, 022913 (2013).

[27] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[28] U. Sivan, Y. Imry, and C. Hartzstein, Phys. Rev. B 39, 1242

(1989).
[29] B. Szafran and F. M. Peeters, Europhys. Lett. 70, 810 (2005).
[30] M. R. Poniedziałek and B. Szafran, J. Phys. Condens.

Matter 24, 085801 (2012).
[31] C. W. J. Beenakker and H. van Houten, in Solid State

Physics, edited by H. Ehrenreich and D. Turnbull
(Academic, New York, 1991), Vol. 44, p. 1.

[32] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, England, 1995).

[33] D. K. Ferry and S.M.Goodnick,Transport in Nanostructures
(Cambridge University Press, Cambridge, England, 1997).

[34] P. Drouvelis, P. Schmelcher, and P. Bastian, J. Comput.
Phys. 215, 741 (2006).

[35] H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D.
Stone, Phys. Rev. B 44, 10637 (1991).

[36] I. V. Zozoulenko, Frank A. Maao, and E. H. Hauge, Phys.
Rev. B 53, 7975 (1996).

[37] D. K. Ferry, A. M. Burke, R. Akis, R. Brunner, T. E. Day, R.
Meisels, F. Kuchar, J. P. Bird, and B. R. Bennett, Semicond.
Sci. Technol. 26, 043001 (2011).

[38] J. Repp, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett. 92,
036803 (2004).

[39] R. Brunner, D. K. Ferry, R. Akis, R. Meisels, F. Kuchar,
A. M. Burke, and J. P. Bird, J. Phys. Condens. Matter 24,
343202 (2012).

[40] F. J. Betancur, I. D. Mikhailov, and L. E. Oliveira, J. Phys. D
31, 3391 (1998).

[41] In Ref. [20], a magnetoresistance resonance is caused by
cascading of similar backscattered states in an array of
smaller billiards (relative to lead openings) at very low
temperature, and attributed to classical dynamics through a
parabolic model potential. In Ref. [25], the same peak is
attenuated for a single billiard, and another peak appears for
B ¼ 0, lowering switching efficiency. This is in contrast to
the mechanism proposed here which relies on decoupling of
resonances from an efficiently switchable, energetically
robust scattering continuum of a single billiard.

[42] A. M. See et al., Phys. Rev. Lett. 108, 196807 (2012).
[43] A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler,

U. Kuhl, and H.-J. Stöckmann, Phys. Rev. Lett. 105, 056801
(2010).

PRL 113, 086802 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

086802-5

http://dx.doi.org/10.1103/PhysRevB.72.115342
http://dx.doi.org/10.1103/PhysRevB.72.115342
http://dx.doi.org/10.1103/PhysRevB.73.235342
http://dx.doi.org/10.1103/PhysRevB.73.235342
http://dx.doi.org/10.1103/PhysRevB.82.085313
http://dx.doi.org/10.1103/PhysRevB.82.085313
http://dx.doi.org/10.1103/PhysRevLett.106.120602
http://dx.doi.org/10.1103/PhysRevLett.106.120602
http://dx.doi.org/10.1103/PhysRevB.63.125309
http://dx.doi.org/10.1103/PhysRevB.63.125309
http://dx.doi.org/10.1016/S1386-9477(00)00181-8
http://dx.doi.org/10.1016/S1386-9477(00)00181-8
http://dx.doi.org/10.1134/S1063785011020040
http://dx.doi.org/10.1134/S1063785011020040
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/PhysRevLett.93.154102
http://dx.doi.org/10.1103/PhysRevLett.93.154102
http://dx.doi.org/10.1103/PhysRevLett.94.216801
http://dx.doi.org/10.1103/PhysRevLett.94.216801
http://dx.doi.org/10.1103/PhysRevB.75.125312
http://dx.doi.org/10.1103/PhysRevB.75.125312
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevB.73.195115
http://dx.doi.org/10.1103/PhysRevB.73.195115
http://dx.doi.org/10.1103/PhysRevLett.83.1838
http://dx.doi.org/10.1103/PhysRevLett.83.1838
http://dx.doi.org/10.1103/PhysRevB.68.165302
http://dx.doi.org/10.1103/PhysRevLett.98.204101
http://dx.doi.org/10.1209/0295-5075/81/37001
http://dx.doi.org/10.1209/0295-5075/81/37001
http://dx.doi.org/10.1103/PhysRevLett.102.026808
http://dx.doi.org/10.1103/PhysRevLett.102.026808
http://dx.doi.org/10.1103/PhysRevB.80.035301
http://dx.doi.org/10.1103/PhysRevB.80.035301
http://dx.doi.org/10.1103/PhysRevB.83.205316
http://dx.doi.org/10.1103/PhysRevB.83.205316
http://dx.doi.org/10.1103/PhysRevLett.108.136804
http://dx.doi.org/10.1103/PhysRevLett.108.136804
http://dx.doi.org/10.1103/PhysRevE.88.022913
http://dx.doi.org/10.1103/PhysRevE.88.022913
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevB.39.1242
http://dx.doi.org/10.1103/PhysRevB.39.1242
http://dx.doi.org/10.1209/epl/i2005-10049-7
http://dx.doi.org/10.1088/0953-8984/24/8/085801
http://dx.doi.org/10.1088/0953-8984/24/8/085801
http://dx.doi.org/10.1016/j.jcp.2005.11.010
http://dx.doi.org/10.1016/j.jcp.2005.11.010
http://dx.doi.org/10.1103/PhysRevB.44.10637
http://dx.doi.org/10.1103/PhysRevB.53.7975
http://dx.doi.org/10.1103/PhysRevB.53.7975
http://dx.doi.org/10.1088/0268-1242/26/4/043001
http://dx.doi.org/10.1088/0268-1242/26/4/043001
http://dx.doi.org/10.1103/PhysRevLett.92.036803
http://dx.doi.org/10.1103/PhysRevLett.92.036803
http://dx.doi.org/10.1088/0953-8984/24/34/343202
http://dx.doi.org/10.1088/0953-8984/24/34/343202
http://dx.doi.org/10.1088/0022-3727/31/23/013
http://dx.doi.org/10.1088/0022-3727/31/23/013
http://dx.doi.org/10.1103/PhysRevLett.108.196807
http://dx.doi.org/10.1103/PhysRevLett.105.056801
http://dx.doi.org/10.1103/PhysRevLett.105.056801

