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We report results of exact diagonalization studies of the spin- and valley-polarized fractional quantum
Hall effect in the N ¼ 0 and N ¼ 1 Landau levels in graphene. We use an effective model that
incorporates Landau level mixing to lowest order in the parameter κ ¼ ððe2=ϵlÞ=ðℏvF=lÞÞ ¼ ðe2=ϵvFℏÞ,
which is magnetic field independent and can only be varied through the choice of substrate. We
find Landau level mixing effects are negligible in the N ¼ 0 Landau level for κ ≲ 2. In fact, the lowest
Landau level projected Coulomb Hamiltonian is a better approximation to the real Hamiltonian for
graphene than it is for semiconductor based quantum wells. Consequently, the principal fractional
quantum Hall states are expected in the N ¼ 0 Landau level over this range of κ. In the N ¼ 1 Landau
level, fractional quantum Hall states are expected for a smaller range of κ and Landau level mixing
strongly breaks particle-hole symmetry, producing qualitatively different results compared to the N ¼ 0

Landau level. At half filling of the N ¼ 1 Landau level, we predict the anti-Pfaffian state will occur for
κ ∼ 0.25–0.75.
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Introduction.—The fractional quantum Hall effect
(FQHE) occurs when electrons are confined to two
dimensions and placed in a uniform perpendicular mag-
netic field at electron densities ρ such that the filling factor
ν ¼ 2πl2ρ is a rational fraction (l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

is the
magnetic length) and the temperature is low (typically
on the order of a kelvin) [1]. For densities ρ ∼ 1011=cm2,
the magnetic field strength B must typically be from
several up to tens of teslas. A plateau is observed in the
Hall resistance with Rxy ¼ h=fe2, for a rational number f,
along with a concomitant vanishing of the longitudinal
resistance Rxx ¼ 0. Since the electrons in graphene move
in a two-dimensional layer of negligible width and interact
through a Coulomb interaction with a dielectric constant
on the order of 1, they would appear to realize a nearly
perfect setting for the FQHE. Instead, the FQHE in
graphene has remained puzzling [2,3] since the initial
experimental observations [4,5], even though early cal-
culations predicted that the FQHE in graphene would be
nearly identical to the FQHE in semiconductor hetero-
structures in the lowest electronic Landau level (LL)
[6–9]. Despite the fact that the single particle dispersion
is linear (relativistic) in graphene and quadratic in semi-
conductor heterostructures, the Haldane pseudopotentials
in the N ¼ 0 LL for both systems are identical in the
absence of LL mixing.
On closer inspection, LL mixing—not taken into account

in previous theoretical studies—may be very different in
graphene than in semiconductors. Landau level mixing
occurs when electrons in the fractionally filledNth LL have

a substantial probability amplitude of making virtual
transitions to higher and lower LLs. This tendency is
characterized by the ratio between the Coulomb interaction
energy and the cyclotron energy; i.e., the LL mixing
parameter κ is defined as

κ ¼
8
<
:

e2=ϵl
ℏω ∼ 2.5ffiffiffiffiffiffiffiffiffiffiffi

B½tesla�
p ; GaAs semiconductor

e2=ϵl
ℏvF=l

¼ e2
ϵvFℏ

; graphene;

where ω ¼ eB=mc. In semiconductors, κ is inversely
proportional to the magnetic field strength B and therefore
can, in principle, be made small with a sufficiently large
magnetic field. Traditionally, this was a primary motivation
for ignoring LL mixing effects in these systems. In
graphene, κ has no magnetic field dependence and only
depends on material properties, namely, the Fermi velocity
vF and the dielectric constant ϵ. For a suspended graphene
sheet κ ≈ 2.2 and for graphene placed on substrates such as
SiO2, κ ≈ 0.9, or boron nitride, κ ≈ 0.5–0.8 [10,11].
Clearly, LL mixing cannot safely be ignored, particularly
in freestanding graphene where the FQHE was first
experimentally observed.
Recently, we constructed an effective Hamiltonian for

the FQHE in graphene that fully incorporates Landau level
mixing [11]. This effective Hamiltonian for electrons
fractionally filling the Nth LL was produced by integrating
out all other LLs to first order in κ (following Ref. [12]) and
is characterized by Haldane pseudopotentials
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HðκÞ ¼
X

i<j

Veffðκ; jri − rjjÞ þ
X

i<j<k

V3bodyðκ; ri; rj;rkÞ

¼
X

α

Vð2Þ
α ðN;κÞ

X

i<j

P̂mðmijÞ

þ
X

β

Vð3Þ
β ðN; κÞ

X

i<j<k

P̂ijkðmijkÞ; ð1Þ

where P̂ijðmijÞ and P̂ijkðmijkÞ project electrons i and j or
i; j, and k onto states with relative angular momentum mij
or mijk, respectively. V

ð2Þ
α ðN; κÞ and Vð3Þ

β ðN; κÞ are the κ
dependent two- and three-body effective Haldane pseudo-
potentials [13,14]. (Similar to Ref. [11], we use planar
geometry pseudopotentials throughout this work.) The
expansion to lowest order in κ is especially interesting
because, in addition to renormalizing the two-body
Coulomb interaction, it generates three-body terms that
explicitly break particle-hole symmetry. The most impor-
tant aspects of this effective Hamiltonian are (i) in the
N ¼ 0 LL the three-body terms vanish due to particle-hole
symmetry, which is an exact symmetry only in this LL,
(ii) the two-body corrections are numerically small for
N ¼ 0, and (iii) the size and character of the LL mixing
corrections make the FQHE unlikely for N ≥ 2. (See
Ref. [11] for more details, especially Fig. 11.)
In this work, we have performed numerical exact

diagonalization of Eq. (1) in the spherical geometry in
the N ¼ 0 and N ¼ 1 LLs, focusing on filling factor
ν ¼ 1=3, 2=3, and 1=2. The first two are representative
of well-understood fractions in GaAs and are almost
certainly Abelian [15–17] while the third is still not
completely understood in GaAs but is suspected to be
non-Abelian in the N ¼ 1 LL [18–20]. In our calculations
Ne electrons are placed on a spherical surface of radiusffiffiffiffiffiffiffiffiffiffiffiffi
NΦ=2

p
with a radial magnetic field produced by a

magnetic monopole of strength NΦ=2 at the center (NΦ
is required by Dirac to be an integer). The relationship
between the magnetic field strength and the number of
particles is NΦ ¼ Ne=ν − S, where S is a topological
quantum number known as the “shift” [21] and the filling
fraction is ν ¼ limNe→∞Ne=NΦ. A fractional quantum Hall
(FQH) state will possess rotational invariance (total angular
momentum L ¼ 0) and an energy gap that remains finite in
the thermodynamic limit. Particle-hole symmetry plays a
central role in the N ¼ 1 LL since the three-body terms that
emerge from LL mixing break this symmetry. Hence,
particle-hole conjugated states may have very different
physics (the particle-hole conjugate relationship is found
through Nh ¼ NΦ þ 1 − Ne.)
Since we are focusing on ν ¼ 1=3, 2=3, and 1=2 we will

compare the exact ground states of Eq. (1) with the
Laughlin [15] state at ν ¼ 1=3 and its particle-hole con-
jugate at ν ¼ 2=3 and the Moore-Read (MR) Pfaffian [18]
and anti-Pfaffian [22,23] states at ν ¼ 1=2. These FQH
states correspond to shifts of S ¼ 3 and 0 for the Laughlin

1=3 and 2=3 states, respectively, and S ¼ 3 and −1 for the
MR Pfaffian and anti-Pfafffian, respectively.
We consider only fully spin-and valley-polarized states

so our results apply to experimental configurations in
which spin and valley degeneracy are explicitly broken,
for example, by the substrate or in bilayer graphene
[24–27]. However, the single particle dispersion in bilayer
graphene is quadratic compared to the linear dispersion in
monolayer graphene; thus, we caution the reader that our
results might only be qualitatively applicable there.
Reference [25] provided an explanation for the recent
experimental observation of a 1=2-filled FQHE in bilayer
graphene [24] but was unable to distinguish MR Pfaffian
from anti-Pfaffian. Perhaps our work can shed some light
on that question. Our results also apply to those states in
which spin and valley polarization occurs spontaneously—
or nearly spontaneously, since weak SU(4) symmetry-
breaking effects are present [28,29]. It is beyond the scope
of the present work to study physics that leads to spin and
valley polarization or to study states not fully polarized
[30–32]. The three-body terms in Eq. (1), while not
increasing the Hilbert space dimension, drastically decrease
the sparsity of the Hamiltonian matrix. While adding spin is
possible and will be done in a future study [33], adding spin
and valley degrees of freedom is numerically prohibitive. It
is likely only possible to consider system sizes on the order
of six particles while including both effects. Hence, these
two effects, in the context of exact diagonalization, will
have to await further studies and/or further numerical and
theoretical breakthroughs.
Before describing our results, we describe the connection

between the filing factor ν in our calculations and the
observed Hall conductance σxy ¼ fðe2=hÞ. We model
electrons with filling fraction ν in the Nth LL by consid-
ering electrons at ν in the N ¼ 0 LL and account for N ≠ 0
by modifying the Haldane pseudopotentials appropriately.
Because of particle-hole symmetry about N ¼ 0, the Hall
conductance f is related to the Landau level N and its
fractional filling ν according to f ¼ 4N − 2þ kþ ν.
The factor of 4 is due to the spin and valley degrees and
k ¼ 0; 1; 2; 3 labels the possible spin and valley quantum
numbers within a LL. Therefore, our results for ν ¼ 1=3
and N ¼ 0 apply to f ¼ −ð5=3Þ, −ð2=3Þ, 1=3, 4=3, and for
N ¼ 1 the corresponding f’s are f ¼ 7=3, 10=3, 13=3,
16=3. Meanwhile, our results for ν ¼ 2=3 and N ¼ 0 apply
to f ¼ −ð4=3Þ, −ð1=3Þ, 2=3, 5=3 and for N ¼ 1 the
corresponding f’s are f ¼ 8=3, 11=3, 14=3, 17=3.
Finally, ν ¼ 1=2 corresponds, in the N ¼ 0 LL to
f ¼ −ð3=2Þ, −ð1=2Þ, 1=2, 3=2 and, in the N ¼ 1 LL, to
f ¼ 5=2, 7=2, 9=2, 11=2. On the hole side, for N ¼ −1,
one simply transforms all f → −f.
Results.—We first report our results and then provide

justification. We conclude that (i) LL mixing has a large
qualitative effect on the FQHE in the N ¼ 1 LL. The
ν ¼ 1=3 FQHE (f ¼ 7=3, 10=3, 13=3, 16=3) survives

PRL 113, 086401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

086401-2



even with strong LL mixing, but the particle-hole conjugate
state at ν ¼ 2=3 (f ¼ 8=3, 11=3, 14=3, 17=3) does not.
We predict a FQHE state in the ν ¼ 1=2 filled N ¼ 1 LL
that is likely in the universality class of the anti-Pfaffian
state [22,23]. (ii) The FQHE in theN ¼ 0 LL of graphene is
nearly identical to the FQHE in the N ¼ 0 LL in semi-
conductor heterostructures even in the presence of strong
LL mixing. Amusingly, the FQHE in the N ¼ 0 LL in
graphene is more like the minimal theoretical model than
semiconductor systems: graphene has no finite-thickness
modification of the Coulomb potential, and LLmixing does
not generate three-body terms as a result of particle-hole
symmetry. As such, the ν ¼ 1=2 case is found to be, as in
semiconductor heterostructures, a composite fermion Fermi
sea [17,34,35].
Graphene FQHE in half-filled Landau levels.—In

Figs. 1(a)–1(c) we show the numerical wave function
overlap between the exact ground state of the effective
Hamiltonian in Eq. (1) for ν ¼ 1=2 in theN ¼ 0 andN ¼ 1
LLs and the Moore-Read Pfaffian (NΦ ¼ 2Ne − 3) and
anti-Pfaffian (NΦ ¼ 2Ne þ 1) wave functions as a function
of the LL mixing parameter κ. For N ¼ 0 we do not
consider the overlap with the anti-Pfaffian wave function
since there are no particle-hole symmetry breaking three-
body terms; i.e., the MR Pfaffian and anti-Pfaffian are
degenerate. For the lowest LL [Fig. 1(a)] the overlap is
relatively insensitive to LL mixing until approximately

κ ∼ 2when it increases slightly before collapsing to zero. In
fact, this behavior and others not shown are consistent
with previous results for ν ¼ 1=2 in the lowest LL of
semiconductor systems [35]. In contrast, in the N ¼ 1 LL
[Fig. 1(b)], LL mixing increases the overlap between the
ground state and the anti-Pfaffian to a maximum above 0.93
while the overlap with the MR Pfaffian monotonically
decreases. The latter phenomenon is the opposite of what
happens in the case of GaAs in the N ¼ 1 LL [36]. The
dramatic effect of the LL mixing induced three-body terms
can be seen if one considers only the two-body terms in
Eq. (1). In that case, the behavior is qualitatively similar to
the N ¼ 0 LL [Fig. 1(c)].
Next we calculate the FQHE energy gap (for a presumed

paired state) for a far-separated quasiparticle and quasihole
pair (an exciton), which is the difference between the
lowest energy at L ¼ Ne=2 forNe=2 even and L ¼ Ne=2 −
1 for Ne=2 odd and the absolute ground state at L ¼ 0. If
the ground state does not have L ¼ 0 the gap is taken to be
zero. This method avoids some aliasing problems inherent
in finite sized FQHE studies and is a useful alternative to a
computation comparing ground state energies for different
values of flux NΦ [37]. But even with this method we still
ignore the NΦ ¼ 21 state when calculating the gap since it
is aliased with an Abelian composite fermion state [16,17].
Interestingly, the FQHE energy gap is a nonmonotonic
function of κ; a maximum is obtained around κ ∼ 0.5 ∼ 0.7
[Fig. 1(d)].
Graphene FQHE in 1=3- and 2=3-filled Landau

levels.—Figures 2(a) and 2(b) show the overlap between
the Laughlin wave function or its particle-hole conjugate
and the exact ground state of Eq. (1) at ν ¼ 1=3 or 2=3
in the N ¼ 0 and N ¼ 1 LLs, i.e., NΦ ¼ 3Ne − 3 or
NΦ ¼ 3Ne=2, respectively. Again, for N ¼ 0 we only
show overlaps with the Laughlin wave function at 1=3
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FIG. 1 (color online). The wave function overlaps between the
exact ground state of Eq. (1) and the MR Pfaffian and anti-
Pfaffian as a function of LL mixing (κ) for the (a) N ¼ 0 and
(b) N ¼ 1 LLs. The FQHE energy gap (exciton energy, i.e., a far
separated quasiparticle and quasihole) for the N ¼ 1 LL in units
of e2=ϵl as a function of κ is shown in panel (d). Note that the
NΦ ¼ 21 system is aliased with a composite fermion state at
ν ¼ 4=9; hence, these results are ambiguous and not included.
Finally, panel (c) shows wave function overlaps in the N ¼ 1 LL
for the exact ground state of Eq. (1) excluding any particle-hole
symmetry breaking three-body terms demonstrating its qualita-
tive similarity with the N ¼ 0 LL.
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FIG. 2 (color online). The wave function overlaps between the
exact ground state of Eq. (1) and the Laughlin state as a function
of LL mixing (κ) for the (a) N ¼ 0 and (b) N ¼ 1 LLs. Panels (c)
and (d) show FQHE excitation gaps (defined in the text) for the
N ¼ 0 and N ¼ 1 LLs in units of e2=ϵl as a function of κ.
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since there are no three-body terms present to break
particle-hole symmetry. The overlap remains very large
(∼0.99) until κ ≈ 2 where it abruptly drops to zero. In the
N ¼ 1 LL, we find that LL mixing breaks particle-hole
symmetry for modest values of κ and the overlaps with the
Laughlin wave function at 1=3 and 2=3 markedly diverge;
the 1=3 overlap remains ∼0.99 until κ ∼ 1 while the 2=3
overlap remains large only until κ ∼ 0.4.
In Figs. 2(c) and 2(d) we calculate the FQHE energy gap

as the difference between the lowest energies at L ¼ Ne
and L ¼ 0 (unpaired excitation). The gap decreases mono-
tonically with κ for N ¼ 0 until collapsing to zero around
κ ∼ 2 coinciding with the κ where the overlap vanishes. For
N ¼ 1 we find that the gap decreases monotonically with κ
until the overlaps and gaps collapse to zero simultaneously.
The 1=3 state survives much stronger LL mixing (to κ ∼ 1)
while the 2=3 state does not (the overlap and gap vanish
at κ ∼ 0.4).
FQHE gaps in the thermodynamic limit and

experimental comparison.—Last, we show the FQHE gaps
extrapolated to the thermodynamic limit for ν ¼ 1=3, 2=3,
and 1=2 in the N ¼ 0 and N ¼ 1 LL (Fig. 3). If
κ ¼ e2=ϵvFℏ is varied in an experiment, by changing
the dielectric constant ϵ, then the energy gap must be
plotted in units of the changing scale e2=ϵl (or else the
scale must be held constant by simultaneously varying B).
Consider two examples. (1) In Ref. [4], the energy gap of
f ¼ 1=3was measured to be Δexp ∼ 60 K at B ¼ 14 T in a
suspended sample with κ ¼ 2.2. As shown in Fig. 3, the
calculated gap is Δcalc ∼ 0.035e2=ϵl. Since ϵ ¼ 1 for a
suspended sample, this corresponds to Δcalc ∼ 85 K,

which differs from the experimental result by a factor
of approximately 1.5. Considering that we have neglected
the effects of disorder, this is an encouraging result. (2) In
Ref. [2], Δexp ∼ 12 K at B ∼ 28 T for f ¼ 4=3. Taking
κ ¼ 0.5 and ϵ ∼ 5, our calculations yield Δ ∼ 50 K—a
factor of about 5 too large. Perhaps this poorer estimate
stems from different disorder characteristics of graphene
on a substrate and/or the neglect of spin and valley degrees
of freedom [31].
Conclusions.—Our conclusions are as follows. (i) When

spin and valley degeneracy are broken, the FQHE in the
N ¼ 0 LL of graphene is expected to be nearly identical to
the B → ∞ minimal model of the FQHE (pure Coulomb
Hamiltonian) as long as κ ≤ 2. Thus, all of the known
results in the N ¼ 0 LL for semiconductor systems transfer
to graphene nearly perfectly even in the presence of LL
mixing. (ii) The FQHE is expected in the N ¼ 1 LL for
moderate values of κ—which might be expected on boron
nitride and SiO2 substrates but not in suspended samples
where LL mixing is too strong. We find strong particle-hole
symmetry breaking in the N ¼ 1 LL, leading to stark
differences between the 1=3 FQHE and the particle-hole
symmetric partner at 2=3; i.e., the 1=3 state would exist in a
system with κ ¼ 0.7 and the 2=3 state might not.
(iii) Intriguingly, we find the anti-Pfaffian state to be
stabilized in the N ¼ 1 LL for moderate values of
κ ∼ 0.25–0.75. The MR Pfaffian, on the other hand, is
disfavored by LL mixing.
While our results predict that the ν ¼ 1=3 and 2=3 states

will be related by symmetry in the N ¼ 0 LL and the latter
will be suppressed in the N ¼ 1 LL, the experimental
situation is more complicated. In the N ¼ 0 LL, odd-
numerator states are generally suppressed. However, this is
likely due to the presence of low-energy Skyrmion exci-
tations in a spontaneously spin- and valley-polarized state
[31,38,39]; however, LL mixing is known to generally
effect Skyrmion excitations [40,41]. When the valley
symmetry is explicitly broken, for example, by a substrate
or with an applied electric field in a bilayer system, odd
numerator states are strengthened. In the N ¼ 1 LL, the
ν ¼ 7=3 state is stronger than the ν ¼ 8=3 state, in agree-
ment with our calculations, yet the ν ¼ 11=3 and 10=3
states have comparable gaps [2], similar to the experimental
observations of the ν ¼ 7=3 and 8=3 gaps in GaAs semi-
conductors. Last, we note that a 1=2-filled FQH state has
only been experimentally observed in bilayer graphene [24]
and so far no experimental groups have definitively
observed a 1=2-filled state in the N ¼ 1 LL in monolayer
graphene unlike in GaAs. We hope our work will motivate
more experimental investigations in graphene.
The FQHE in graphene provides a diverse playground

where interplay between LL mixing, disorder, and spin and
valley degrees of freedom lead to rich and surprising
physics. In this work, we have focused on the effects of
LL mixing.
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FIG. 3 (color online). FQHE energy gaps extrapolated to the
thermodynamic limit as functions of κ for ν ¼ 1=3 and 2=3 in the
N ¼ 0 and N ¼ 1 LLs and ν ¼ 1=2 in the N ¼ 1 LL. The 1=3
and 2=3 gaps decrease with κ while at ν ¼ 1=2 the gap shows a
maximum in κ at approximately the same value where the overlap
with the anti-Pfaffian is maximum [see Fig. 1(b)]. The lines are
merely a guide to the eye and the colored boxes indicate the
approximate range of κ for graphene on a substrate (blue) and
suspended graphene (green).
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