
Robust Energy Transfer Mechanism via Precession Resonance
in Nonlinear Turbulent Wave Systems

Miguel D. Bustamante,* Brenda Quinn,† and Dan Lucas‡

Complex and Adaptive Systems Laboratory, School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
(Received 4 June 2013; published 22 August 2014)

A robust energy transfer mechanism is found in nonlinear wave systems, which favors transfers toward
modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics
and plasma wave turbulence. We emphasize the concepts of truly dynamical degrees of freedom and triad
precession. Transfer efficiency is maximal when the triads’ precession frequencies resonate with the
system’s nonlinear frequencies, leading to a collective state of synchronized triads with strong turbulent
cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.
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Introduction.—A variety of physical systems of high
technological importance consist of nonlinearly interacting
oscillations or waves: nonlinear circuits in electrical power
systems, high-intensity lasers, nonlinear photonics, gravity
water waves in oceans, Rossby-Haurwitz planetary waves
in the atmosphere, drift waves in fusion plasmas, etc [1–6].
These systems are characterized by extreme events that are
localized in space and time and are associated with strong
nonlinear energy exchanges that dramatically alter the
system’s global behavior. One of the few consistent theories
that deal with these nonlinear exchanges is classical wave
turbulence theory [4,7,8]. This theory produces statistical
predictions by making ad hoc hypotheses on correlations of
the evolving quantities and is valid in the limit of weak
nonlinearity. One example where this theory is widely used
is in the numerical prediction of ocean waves [9].
This Letter addresses a new robust mechanism of strong

energy transfers in real physical systems, precisely in the
context where the hypotheses of classical wave turbulence
theory do not hold, namely, when the spatial domains have a
finite size, when the amplitudes of the carrying fields are not
infinitesimally small, and when the linear wave time scales
are comparable to the time scales of the nonlinear oscil-
lations. The theory that deals with these energy exchanges is
discrete andmesoscopicwave turbulence [10–20] and is still
in development. Our results apply to a variety of systems,
namely, the nonlinear partial differential equations (PDEs)
of classical turbulence, nonlinear optics, quantum fluids,
and magnetohydrodynamics considered on bounded physi-
cal domains. For the sake of simplicity of presentation, we
discuss, here, the Charney-Hasegawa-Mima (CHM) equa-
tion [6,21], a PDE governing Rossby waves in the atmos-
phere and drift waves in inhomogeneous plasmas
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where, in the plasma case, thewave field ψðx; tÞð∈ RÞ is the
electrostatic potential, F−1=2 is the ion Larmor radius at the

electron temperature, and β is a constant proportional to
the mean plasma density gradient. We assume periodic
boundary conditions: x ∈ ½0; 2πÞ2. Decomposing the field
in Fourier harmonics, ψðx; tÞ ¼ P

k∈Z2AkðtÞeik·x with
wave vector k ¼ ðkx; kyÞ, the components AkðtÞ, k ∈ Z2

satisfy the evolution equation
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where Zk
k1k2

¼ ðk1xk2y − k1yk2xÞ½jk1j2 − jk2j2=ðjkj2 þ FÞ�
are the interaction coefficients, ωk ¼ ð−βkxÞ=ðk2 þ FÞ are
the linear frequencies, and δ is the Kronecker symbol.
Reality of ψ implies A−k ¼ A�

k (complex conjugate).
Since the degree of nonlinearity in the PDE is quadratic,
themodesAk interact in triads. A triad is a group of any three
spectral modes Ak1

ðtÞ, Ak2
ðtÞ, Ak3

ðtÞ whose wave vectors
satisfyk1 þ k2 ¼ k3. The triad’s linear frequencymismatch
is defined by ωk3

k1k2
≡ ωk1

þ ωk2
− ωk3

.
Since any mode belongs to several triads, energy can be

transferred nonlinearly throughout the intricate network or
cluster of connected triads. In weakly nonlinear wave
turbulence, triad interactions with nonzero frequency mis-
match can be eliminated via a near-identity transformation.
However, at finite nonlinearity, these interactions cannot be
eliminated a priori because they take part in the triad
precession resonances presented below. As evidence for
this Letter’s timeliness, it has recently been shown that
precession in Rossby waves has a role in weather unpre-
dictability and chaos [5] and, in real systems, triads or
quartets with nonzero frequency mismatch are responsible
for most of the energy exchanges [22–24]. Here, we
consider inertial-range dynamics; i.e., no forcing and no
dissipation are imposed on the system, and enstrophy
cascades to small scales respect enstrophy conservation.
Truly dynamical degrees of freedom.—An under-

exploited formulation for a large class of PDEs with
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quadratic nonlinearity is to write evolution equations for
the “truly dynamical” degrees of freedom [15,25]. To this
end, we introduce the amplitude-phase representation,
Ak ¼ ffiffiffiffiffi

nk
p

expðiϕkÞ, where nk is called the wave spectrum
[8]. The spectrum is constrained by the exact conservation
in time of E ¼ P

k∈Z2ðjkj2 þ FÞnk (energy) and E ¼P
k∈Z2 jkj2ðjkj2 þ FÞnk (enstrophy). In the context of

the CHM equation (Galerkin-truncated to N wave vectors),
the truly dynamical degrees of freedom are any N − 2

linearly independent triad phases φk3

k1k2
≡ ϕk1

þ ϕk2
− ϕk3

[19,26] and the N wave spectrum variables nk. These 2N −
2 degrees of freedom satisfy a closed system of evolution
equations (the individual phases ϕk are slave variables,
obtained by quadrature)

_nk ¼
X
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where the second equation applies to any triad (k1 þ k2 ¼
k3). NNTTk3

k1k2
is a short-hand notation for “nearest-

neighboring-triad terms”; these are nonlinear terms similar
to the first line in Eq. (3) (see Supplemental Material [27]).
We should emphasize that any dynamical process in the
original system results from the dynamics of Eqs. (2)–(3).
Precession resonance.—The nature of the triad phases

φk3

k1k2
is markedly different from the spectrum variables nk

in that the latter directly contribute to the energy of
the system, whereas the former have a contribution that
is more subtle. In fact, notice that the rhs of Eq. (3)
admits, under plausible hypotheses, a zero-mode (in time):
Ωk3

k1k2
≡ limt→∞ð1=tÞ

R
t
0 _φk3

k1k2
ðt0Þdt0. This is, by definition,

the precession frequency of the triad phase and is a
nonlinear function of the variables. Typically, it does not
perturb the energy dynamics because it is incommensurate
with the frequency content of the nonlinear oscillations of
the triad variables φk3

k1k2
and nk1

, nk2
, nk3

.
However, in special circumstances, a resonance occurs

whereby the triad precession frequency Ωk3

k1k2
matches one

of the typical nonlinear frequencies of the triad variables. In
this case, the rhs of Eq. (2) will normally develop a zero-
mode (in time), leading to a sustained growth of the energy
in the corresponding wave spectrum nk, for some wave
vector(s) k. We call this a (nonlinear) triad precession
resonance. When several triads are involved in this type of
resonance, strong fluxes of enstrophy are exhibited through
the network of interconnected triads, leading to coherent
collective oscillations and cascades toward small scales.
Now, one can ask: Is this resonance accessible by the

manipulation of the initial conditions? The answer is yes,

and amounts to a simple overall rescaling of the initial
spectrum nk → αnk for all k, provided the linear frequency
mismatch ωk3

k1k2
be nonzero for some triad. To see this, a

simple dimensional analysis argument on Eq. (2) shows that,
under such a rescaling, the nonlinear frequency content
rescales approximately by a factor α1=2 (e.g., enstrophy sets
a nonlinear frequency ∼

ffiffiffi
E

p
). But from Eq. (3), the triad

precession is the sum of a constant term (−ωk3

k1k2
) and a term

that rescales by a factor α1=2. Therefore, for some value of α,
a matching between triad precession and nonlinear
frequency can be found, provided ωk3

k1k2
≠ 0.

Probing the strong transfer mechanism.—We provide a
comprehensive overview of the mechanism by introducing
a family of models that interpolates between the original
equations (2)–(3) and a simple low-dimensional system.
The family is parametrized by two positive numbers ϵ1, ϵ2
which serve to deform the interaction coefficients, Zkc

kakb
, as

follows.
(A) Choose a triad k1 þ k2 ¼ k3 with zero frequency

mismatch: ωk3

k1k2
¼ 0. This condition is not essential but

simplifies the analytical solutions for the triad spectrum and
triad phase [16]. Do not deform the interaction coefficients
for this triad.
(B) Introduce a fourth mode via the new triad k2þ

k3 ¼ k4. This triads’ interaction coefficients are replaced
by ϵ1Z

kc
kakb

so that the limit ϵ1 → 0 corresponds to the
isolated triad of (A).
(C) All other triads in the system have their interaction

coefficients replaced by ϵ2Z
kc
kakb

. The limit ϵ2 → 0 recovers
the two-triad system in (B).
(D) The case ϵ1 ¼ ϵ2 ¼ 1 is the full PDE model (2)–(3).
Figure 1 shows a schematic of the initial triad, first layer

target modes, and some second layer modes.
Case (A), ϵ1 ¼ ϵ2 ¼ 0: This is the isolated triad and is

an integrable system [14]. We choose parameters F ¼ 1,

FIG. 1 (color online). Schematic showing the source triad (S)
k1 þ k2 ¼ k3 with all first layer modes (k4, k5, k6) and second
layer modes k7 and k8. Circles denote algebraically dependent
triads, eight triads are shown in total. Arrows indicate hypo-
thetical transfers of enstrophy from S.
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β ¼ 10, and the triad wave vectors k1 ¼ ð1;−4Þ,
k2 ¼ ð1; 2Þ, k3 ¼ k1 þ k2 ¼ ð2;−2Þ, so ωk3

k1k2
¼ 0. The

analytical solution for the spectra and triad phase is given in
the Supplemental Material [27].
Case (B), ϵ1 ≠ 0, ϵ2 ¼ 0: This is a system of two

connected triads: k1 þ k2 ¼ k3 and k2 þ k3 ¼ k4, with
k4 ¼ ð3; 0Þ. The second triad has frequency mismatch
ωk4

k2k3
¼ −8=9. The initial conditions for the 6 truly

dynamical degrees of freedom are φk3

k1k2
ð0Þ ¼ π=2,

φk4

k2k3
ð0Þ ¼ −π=2 and nk1

ð0Þ¼ 5.95984×10−5α, nk2
ð0Þ ¼

1.488 58 × 10−3α, nk3
¼ 1.287 92 × 10−3α, nk4

ð0Þ ¼ 0,
where α is a rescaling parameter. The energy and enstrophy
invariants are E ¼ 0.021 5955α, E ¼ 0.155 625α, reducing
the effective number of degrees of freedom to 4. This is not
necessarily integrable, so, in general, we need to solve the
evolution equations (2)–(3) numerically in order to study
the growth of mode nk4

via the precession resonance
mechanism. However, in the limit ϵ1 → 0, the analytical
solution of the isolated (first) triad provides enough
information to approximate for the fourth mode’s spectrum
nk4

by quadrature. This leads to an explicit formula for the
resonant condition in the form

Ωk4

k2k3
¼ pΓ; p ∈ Z; ð4Þ

where Γ is the isolated triad nonlinear frequency [16].
The isolated triad solution from case (A) gives
Γ ¼ 0.272 67α1=2. When Ωk4

k2k3
is such that resonance

(4) is nearly satisfied, we have Ωk4

k2k3
¼ −0.201 88α1=2 þ

8=9 (see the Supplemental Material [27]), so we obtain

αp ¼ 10.6272
ð0.740 382þ pÞ2 ; p ¼ 0; 1;…;

for predicted values of the initial condition leading to strong
growth in nk4

in the limit ϵ1 → 0 (the cases p < 0 are just
shifts of the initial phases by π).
Numerical results for case (B): ϵ1 ≠ 0, ϵ2 ¼ 0.—We

numerically integrate Eqs. (2)–(3) with the above initial
conditions, from time t ¼ 0 to t ¼ 2000=

ffiffiffi
E

p
. The factorffiffiffi

E
p

ensures that we compare equivalent nonlinear time
scales. Near resonances, strong transfers have a time scale
t ∼ 20=

ffiffiffi
E

p
[including case (C) below]; we integrate further

in time to obtain well-converged estimates of triad pre-
cessions. To confirm the predicted values of α leading to
efficient enstrophy transfer toward the fourth mode nk4

ðtÞ,
we define the transfer efficiency as the maximal ratio
between this mode’s enstrophy and the total, over the
simulation time. In the case ϵ1 ¼ 10−5, we obtain strong
peaks of efficiency at the predicted resonant values of α
(Fig. 2, bottom). The precession is best studied in dimen-
sionless form, i.e., relative to the nonlinear frequency scaleffiffiffi
E

p
. Figure 2 (top) shows the numerically computed

dimensionless precession Ωk4

k2k3
=

ffiffiffi
E

p
as a function of α,

leading to a confirmation of the resonances (4) for p ¼ 0, 1,
2 (the cases p ¼ 3; 4;…, can be found but have signifi-
cantly less efficiency). The behavior of the precession in
between resonances is due to a competition between
harmonics of the fundamental frequency of the isolated
triad equation and can be computed analytically.
When the above resonances are satisfied, trajectories are

observed visiting the neighborhood of unstable periodic
orbits (see the Supplemental Material [27]). It is the ejection
along these unstable manifolds which allows an exploration
of phase space corresponding to high transfer of enstrophy to
the fourth mode nk4

. These unstable periodic orbits (and
other invariant manifolds such as critical points) are persis-
tent [28] in parameter space. An elementary tracing study of
the solution branches in (ϵ, α) parameter space, using a
bisectionmethod (which overlooks possible bifurcations), is
presented for the more general case below.
Case (C), ϵ1 ≠ 0, ϵ2 ≠ 0: The next step is to introduce

the interactions of additional modes by setting ϵ2 ≠ 0. We
simulate this via a pseudospectral method with 1282

resolution, 2=3 dealiasing (so N ≈ 2 × 422), and explicitly
controlling the first four modes’ interaction coefficients.
We retain the triad initial condition used above and observe
the efficiency of enstrophy transfers as ϵ2 increases from
zero. In particular, unstable periodic orbits can be traced
via bisection in α. We do this tracing until we reach
ϵ1 ¼ ϵ2 ¼ 0.1, which is large enough to give nontrivial
transfers to high wave numbers. The triad initial conditions
imply that dynamically populated modes must have wave
vectors k ¼ lk1 þmk2. Thus, we investigate transfer
efficiency via a partition of k space into bins defined
by: binj∶ 2j−1 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
≤ 2j, j ¼ 1, 2, 3, 4. Figure 3

(left) shows the results for the efficiency of enstrophy
transfers to bin2 and bin3 as a function of α. The peak at

FIG. 2 (color online). Numerical results from case (B) with
ϵ1 ¼ 10−5 showing dimensionless precession (top) and enstrophy
transfer efficiency to mode nk4

ðtÞ (bottom). Vertical lines indicate
predicted resonances (as ϵ1 → 0) and show strong transfer
efficiency at these values when condition (4) is satisfied (hori-
zontal lines, top figure).
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α ≈ 26.01 for bin2 can be traced back to the predicted
resonance α0 ≈ 19.39 valid in the limit ϵ1, ϵ2 → 0. The
remaining peaks correspond to resonances of new modes in
the bins. For example, the bin2 peak at α ¼ 180 entails a
strong enstrophy transfer to mode (6,0) via the precession
resonance between triad ð1; 2Þ þ ð5;−2Þ ¼ ð6; 0Þ and the
nonlinear oscillations, of the form (4) with p ¼ 0 : Fig. 3
(right) shows a close-up near α ¼ 180 of this triad’s
precession and bin3 efficiency as functions of α, showing
that high efficiency corresponds to vanishing precession.
There is significant evidence that the efficiency peaks in

Fig. 3 correspond to synchronization of the precession
resonances over several triads, as a collective oscillation
leading to strong transfers toward small scales. We leave
the quantitative study of this synchronization for the full
PDE model case (D), with a general initial condition.
Case (D), full PDE (1) results, ϵ1 ¼ ϵ2 ¼ 1: Having

shown, in the case of a special initial condition, that strong
enstrophy transfers to small scales are due to precession
resonances, we now consider a more general large-scale
initial condition: nk ¼ 0.032 143 × αjkj−2 exp ð−jkj=5Þ
for jkj ≤ 8 and zero, otherwise, where α is the rescaling
parameter. Total enstrophy is E ¼ 0.155 625α. Initial
phases ϕk are chosen randomly and uniformly between
0 and 2π. Direct numerical simulations use the pseudo-
spectral method of case (C) with resolution 1282 from t ¼ 0
to t ¼ 800=

ffiffiffi
E

p
. To study cascades, we partition the k space

in shell bins (now denoted “Binj” to distinguish from
“binj” in the previous case) defined as follows:
Bin1∶ 0 < jkj ≤ 8, and Binj∶ 2jþ1 < jkj ≤ 2jþ2, j ¼
2; 3;…, so nonlinear interactions lead to successive trans-
fers between bins. Near resonances, strong transfers to Bin4
have a time scale t ∼ 40=

ffiffiffi
E

p
. Figure 4 (left) shows the

efficiencies of enstrophy transfers from Bin1 to Bin3 and
Bin4. Peaks concentrate in a broad region, corresponding to
collectively synchronized precession resonances. Strong
synchronization is signalled by minima of the dimension-
less precession standard deviation σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΩ2i − hΩi2

p
=

ffiffiffi
E

p
averaged over the whole set of triad precessions (about N2

triads, not just the N − 2 independent precessions). A
close-up around the Bin4 efficiency peak at α ∼ 900 is
shown in Fig. 4 (right), showing that efficiency peaks
correspond to minima of σ.
Enstrophy fluxes, equipartition, and resolution study.—

Figure 5 shows, for representative values of α, time

FIG. 3 (color online). Numerical results from case (C) with
ϵ1 ¼ ϵ2 ¼ 0.1 at 1282 resolution. Left: Enstrophy transfer effi-
ciency against α in bin2 and bin3. Vertical lines denote peaks at
α ¼ 26.01 and α ¼ 180. Right: Dimensionless precession
Ωc

ab=
ffiffiffi
E

p
for triad ð1; 2Þ þ ð5;−2Þ ¼ ð6; 0Þ and enstrophy trans-

fer efficiency in bin3, near efficiency peak α ¼ 180.

FIG. 4 (color online). Numerical results from full PDE model,
case (D) at 1282 resolution. Left: Enstrophy transfer efficiency
against α in Bin3 and Bin4. Vertical lines denote α ¼ 900. Right:
Dimensionless precession standard deviation (over all interacting
triads) and enstrophy transfer efficiency in Bin4, both near
efficiency peak α ¼ 900.

FIG. 5 (color online). Time-averaged dimensionless enstrophy
spectra, compensated for enstrophy equipartition, for various
values of α from case (D) at 1282 resolution. The vertical line
jkj ¼ 8 denotes the high wave number boundary of Bin1. This
bin contains all the initial enstrophy.
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averages of dimensionless enstrophy spectra Ek=E, com-
pensated for enstrophy equipartition to aid visualization.
In all cases, the system reaches small-scale equipartition
(Bin2 − Bin4) quite soon: Teq ≈ 80=

ffiffiffi
E

p
. Remarkably, the

flux of enstrophy from large scales (Bin1) to small scales
(Bin4) is 50% greater in the resonant case (α ¼ 625) than in
the limit of very large amplitudes (α ¼ 106). Also, in the
resonant case equipartition encroaches on the large scales.
At double the resolution (2562), the enstrophy cascade goes
further to Bin5 and all above analyses are verified, with
Bin4 replaced by Bin5. The transfer time scales seem to
increase weakly with resolution, in accordance with known
results [29–31].
Conclusions and extensions.—The strong transfer effect

due to precession resonance is robust and has practical
applications in experiments and engineering (e.g., energy-
harvesting devices) because transfer efficiency is maximal
at intermediate nonlinearity. There is vast literature on
precessionlike resonances in galactic dynamics, notably,
Pluto precession-orbit resonance and orbital 2∶5 Saturn-
Jupiter resonance [32,33]. The critical balance turbulence
principle [34,35] is effectively satisfied at the resonance (4),
where we fine-tune a nonlinear frequency [the nonlinear
contributions to Ωk3

k1k2
, see Eq. (3)] with the linear fre-

quency mismatch ωk3

k1k2
. Possibility for future work

includes investigating this precession resonance mecha-
nism in more complex triad systems (water gravity waves,
magnetohydrodynamics) and quartet and higher-order sys-
tems (Kelvin waves in superfluids, nonlinear optics), along
with including forcing and dissipation.
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