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The Bénard–von Kármán vortex shedding instability in the wake of a cylinder is perhaps the best known
example of a supercritical Hopf bifurcation in fluid dynamics. However, a simplified physical description
that accurately accounts for the saturation amplitude of the instability is still missing. Here, we present a
simple self-consistent model that provides a clear description of the saturation mechanism and
quantitatively predicts the saturated amplitude and flow fields. The model is formally constructed by a
set of coupled equations governing the mean flow together with its most unstable eigenmode with finite
size. The saturation amplitude is determined by requiring the mean flow to be neutrally stable. Without
requiring any input from numerical or experimental data, the resolution of the model provides a good
prediction of the amplitude and frequency of the vortex shedding as well as the spatial structure of the mean
flow and the Reynolds stress.
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Simple models are essential to our understanding of
complex nonlinear phenomena. The Van der Pol oscillator,
for example, demonstrates how nonlinear oscillations can
be described by the appearance of a limit cycle [1]. In large
dimensional systems, however, these simple models do
not entirely reveal the mechanisms that determine relevant
parameters such as the dominant frequency or saturation
amplitude. For supercritical instabilities in fluid dynamics,
the mean flow has been proposed as a key element to
explain the origin of the dominant frequency [2–5] and the
physical mechanism of the saturation process [5–7]. The
physical picture, thus, invoked to understand the saturation
is the following: perturbations feeding on an unstable flow
induce mean flow modifications that increase while pertur-
bations grow, up to the point where the mean flow becomes
neutrally stable and perturbations stop growing and saturate.
The present Letter aims at assessing this scenario.
An early formulation of this concept of marginal stability

of the mean flow was given by Malkus [8] in the context
of turbulent flows. Shortly after, aiming for an equation
describing the saturation of supercritical instabilities, Stuart
[6] devised a simplified closed system wherein the mean
flow was only affected by the Reynolds stress divergence of
its leading eigenmode. By further assuming that the
eigenmode was given by the unperturbed base flow,
Stuart managed to obtain an equation for the saturation
amplitude through the exact balance between the dissipa-
tion of the perturbation and the energy transfer from the
mean flow. It was not until after two more years, through a
more rigorous perturbative analysis close to threshold, that
he mathematically derived an amplitude equation, the
Stuart-Landau equation, directly from the Navier-Stokes
equations [9].

Despite the beauty and consistency of the multiple-scale
expansion method, its perturbative nature implies that the
spatial structure of the growing unstable mode is in large
part fixed by the unperturbed base flow. However, there are
cases in which the spatial structure of the saturated mode
differs considerably from that of the linear mode, limiting
the validity of the usual Stuart-Landau amplitude equation
[10,11]. This opens the question of whether one can
formulate a more accurate prediction of the saturation
amplitude by retaining some of the spatial degrees of
freedom.
The purpose of the present Letter is to propose a model

that physically describes the saturation mechanism of an
unstable flow, shedding some light on the nonlinear effects
that are relevant for the coupling of the perturbation and the
mean flow equations. The coupled equations are solved in a
self-consistent (SC) way, through a quasilinear single
harmonic approximation of the perturbation, allowing us
to determine a priori the mean flow and the frequency and
structure of the dominant harmonic perturbation, without
resorting a posteriori to linear stability analysis of mean
flows averaged from direct numeral simulations (DNS) or
experimental data. In addition, the method yields a pre-
diction of the perturbation amplitude.
A widely studied archetype of a supercritical instability

in fluid flows is the flow past a circular cylinder [12],
characterized by the nondimensional Reynolds number
Re ¼ U∞D=ν, where ν is the kinematic viscosity, U∞
the free-stream velocity, and D the cylinder diameter. As
the Reynolds number increases, a Hopf bifurcation occurs
at Re ∼ 47 [13] and the flow dynamics changes from a
steady symmetric state to an oscillating time periodic
configuration presenting the Bénard–von Kármán vortex
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street [14]. The contribution of the fundamental harmonic is
dominant compared to the higher harmonics even in the
fully saturated regime [10].
Linear stability analyses describe well this instability by

predicting the value of the threshold as well as the shedding
frequency at threshold [11,15,16]. However, as noticed in
Refs. [4] and [5], the frequency prediction based on the
leading eigenvalue of the base flow does not match the
experiments as one departs from threshold. In contrast,
the stability analysis around the mean flow shows a
remarkably good frequency prediction with almost zero
growth rate, supporting the validity of Malkus’ marginal
stability criterion. However, these linear stability analyses
cannot provide any information about the perturbation
amplitude.
Qualitative aspects of the saturation of the instability are

well described by a Stuart-Landau amplitude equation, the
coefficients of which could be obtained both empirically
[10] and using the multiple-scale expansion, as done by
Sipp and Lebedev [17]. However, due to the perturbative
nature of its derivation, this model is quantitatively valid
only very close to threshold. We therefore focus on the
supercritical regime of the flow past a cylinder, for Re > 47
and propose a non-perturbative quasilinear model coupling
the mean flow equation to a linear harmonic disturbance,
consistently accounting for the mean flow distortion. In this
approach, the mean flow comes as a result of the model
instead of being required as an input.
The starting point of the model is the Reynolds decom-

position uðx; tÞ ¼ UðxÞ þ u0ðx; tÞ of the instantaneous
flow in mean U ¼ hui and perturbation u0, where hi
denotes time averaging and where hu0i ¼ 0 by construc-
tion. Because of incompressibility, it is understood in what
follows that all velocity fields must be divergence free; we
will not write this condition explicitly. This decomposition
can be introduced in the 2D incompressible Navier-Stokes
equations to yield

NðUÞ ¼ −hðu0 ·∇Þu0i; ð1aÞ

∂tu0 þ LUðu0Þ ¼ −ðu0 · ∇Þu0 þ hðu0 ·∇Þu0i ð1bÞ

where

NðUÞ≡ ðU ·∇ÞU þ∇P − Re−1ΔU ð2Þ
corresponds to the advective, pressure gradient, and dif-
fusive terms of the Navier-Stokes equations (NSE) and
LUðu0Þ is the corresponding operator for the NSE linearized
around U, i.e.,

LUðu0Þ≡ ðU ·∇Þu0 þ ðu0 ·∇ÞU þ∇p0 − Re−1Δu0: ð3Þ

P and p0 are the pressure fields required to impose
incompressibility on U and u0, respectively. No approxi-
mation has been performed so far.

Different nonlinear effects can be identified in Eq. (1).
The right-hand side (rhs) of Eq. (1a) corresponds to minus
the Reynolds stress divergence hðu0 ·∇Þu0i, a forcing of u0
on U which can be also viewed as the body force required
for the mean flow U to become a stationary solution of the
NSE [5]. The effect of the mean flow U back on the
fluctuating part u0 is contained in the nonlinear advection
terms of the linearized operator LUðu0Þ; with U prescribed
by experimental or computational data, these are the terms
that are taken into account in mean flow stability analyses.
The rhs of Eq. (1b) contains the nonlinear terms that allow
interactions of u0 at different frequencies and generate
different harmonics. In the present case of the cylinder, the
power spectra of the vortex shedding signal is strongly
dominated by a single frequency, the fundamental har-
monic of the vortex shedding [10]. Neglecting the nonlinear
terms in the rhs, Eq. (1b) becomes linear in u0. The
linearized Navier-Stokes operator can be diagonalized,
and the perturbation can, therefore, be expanded into the
basis of its eigenmodes u0n ¼ un expðλntÞ þ ūn expðλ̄ntÞ,
where the overbar represents the complex conjugate.
Focusing on the least stable eigenmode pair n ¼ 1, one
obtains

NðUÞ ¼ −2A2Reððū1 ·∇Þu1Þ; ð4aÞ

λ1u1 þ LUðu1Þ ¼ 0; ð4bÞ

where u1 is the least stable eigenmode of the model mean
flow U as computed from Eq. (4b), λ1 ¼ σ1 þ iω1 is its
associated eigenvalue, and A is a real constant that
represents the amplitude of the first eigenmode as normal-
ized by its L2 norm. Reð·Þ in Eq. (4a) denotes the real part.
In the computation of the Reynolds stress divergence, the
time variation associated to the real part of the eigenvalue
σ1 is neglected. Therefore, Eq. (4a) can be seen as a
quasistatic approximation of the mean flow in which the
slow time scale dynamics associated to the growth of the
unstable mode is slaved to the amplitude A, which may be
then treated as an external parameter.
The straightforward solution of Eq. (4) for A ¼ 0

corresponds to the base flowUB, i.e., the stationary solution
of the NSE together with its corresponding unstable
eigenmode u1;B, which represents the initial perturbation
growing at a rate σ1;B and frequency ω1;B. If the amplitude
A is increased, the unstable mode turns the initial base
flow into an increasingly modified mean flow through
the divergence of the Reynolds stress in Eq. (4a). In the
process, the mean flow modifications simultaneously
change the eigenmode structure and eigenvalue through
the linearized perturbation Eq. (4b). One can expect that,
from small to moderate values of the amplitude A, there
exists a solution to the coupled perturbation–mean flow
Eqs. (4), meaning that the perturbation structure u1 is the
one that forces the mean flow U by the Reynolds stress
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divergence in such a particular way that the mean flow
generates the aforementioned perturbation structure u1.
Associated to this solution there will be a certain growth
rate σ1 and frequency ω1, creating an implicit relation
between the growth rate and amplitude σ1ðAÞ.
For a finite amplitude A, the software FREEFEM++ is used

to discretize Eq. (4) and solve Eq. (4a) for a given u1, while
SLEPC is used for the eigenvalue problem of Eq. (4b) with a
given U. These two equations are then coupled through an
iterative scheme until convergence is achieved. The eigen-
mode of an initial guess for the mean flowUg [the base flow
UB or a solution of Eq. (4) for a smaller amplitude] is used
for the Reynolds stress forcing in Eq. (4a), allowing us to
solve for a mean flow correction Uc which serves to
generate a new guess Ung ¼ γUc þ ð1 − γÞUg where
0 < γ < 1. The leading eigenmode of the new guess is
then computed, and the process is repeated until conver-
gence is achieved. We have found that this procedure
converges robustly provided the eigenmode is normalized
by its associated Reynolds stress divergence, i.e., when
A2
f ≡ A2jj2Reððū1 · ∇Þu1ÞjjL2=jju1jj2L2 is fixed. This is

natural since variations of the amplitude Af directly control
the magnitude of the forcing term [rhs in Eq. (4a)].
As shown in Fig. 1, the growth rate σ1 resulting from

these computations decreases as the amplitude of the
Reynolds stress increases. At the same time, the structure
of the Reynolds stress forcing computed from the most
unstable eigenmode moves upstream with increasing
amplitude Af, (insets in Fig. 1), continuously modifying
the mean flow and stabilizing it. The upstream migration of
the Reynolds stress forcing follows the shortening of the
recirculation region of the corresponding mean flow,
indicated by the black line in each inset of Fig. 1. This

length reduction of the recirculation region is totally in line
with previous descriptions of the differences between the
base and the mean flow [5,11], and it has been proposed as
a key feature for the instability saturation mechanism [18].
A clear physical picture emerges: the base flow UB first

develops its instability, which grows and forces the under-
lying flow through the Reynolds stress divergence
2A2Reððū1 · ∇Þu1Þ, modifying it towards the mean flow.
If one is to imagine that the evolution given by the NSE
linearized around the model’s mean flow (4b) could
approximate the evolution of the vortex shedding around
the exact mean flow, then one requires the leading
eigenmode to oscillate in a purely sinusoidal way. This
corresponds to the marginal stability criterion, consistent
with the results of Barkley [5] and with the stabilizing effect
of the growing perturbations on σ1ðAÞ through the mean
flow distortion (see Fig. 1). Therefore, we look for a
particular amplitude A� for which there is a marginally
stable mean flow U� such that σ�1ðA�Þ ¼ 0. This amplitude
A�, which is not known a priori, will correspond to the
saturation amplitude of the self-consistent model

NðU�Þ ¼ −2A�2Reððū�1 · ∇Þu�1Þ; ð5aÞ

iω�
1û

�
1 þ LU� ðû�1Þ ¼ 0: ð5bÞ

Figure 2(a) compares the converged mean flow U�
obtained by the present model (bottom half) with the mean
flow of the nonlinear DNS (top half), showing that the
approximation of the mean flow x-direction velocity is
remarkable, with a length and minimum velocity of the
recirculation region about 2% from the equivalent values of
the full DNS. Moreover, the similarity of the Reynolds
stress divergence of the model, calculated from the leading
eigenmode u1, and that of the fully nonlinear time-averaged
DNS is striking [Fig. 2(b)]. A more quantitative compari-
son is given in Fig. 2(c). It should be highlighted that the
full DNS Reynolds stress divergence is built by all the
harmonics whereas in the self-consistent model it is
constituted only by the leading eigenmode of the mean
flow, which is neutrally stable. Both the self-consistent and
fully nonlinear Reynolds stress divergence present similar
amplitude and spatial distribution concentrating the forcing
close to the cylinder. The Reynolds stress forcing acts on
their corresponding mean flows by pushing downstream
the recirculation region of the base flow (Fig. 1), thus,
reducing its streamwise length, consistent with the recir-
culation length difference between the mean and the base
flow [5,11,18].
Figure 3 compares the frequency predicted by the present

self-consistent saturation model with experimental and
DNS data for different Reynolds number. Because of the
resemblance of the model and exact mean flows, it does not
come as a surprise that the leading eigenfrequency of the
present model falls onto the experimental data, as does the
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FIG. 1 (color online). Growth rate σ1 for the converged coupled
system of equations of the self-consistent model (4) for different
Reynolds stress forcing amplitudes A2

f at Re ¼ 100. The insets
show the spatial distribution of the divergence of the Reynolds
stress in the x direction and the boundary of the recirculation
region for different A2

f , as indicated in the figure.
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eigenfrequency of the linearly least stable mode of the real
mean flow, as described by Barkley [5]. On the contrary,
the unstable base flow considerably underestimates the
experimental frequency.
The amplitude of the perturbation, defined as

A ¼ jju0jjL2 , varying with the Reynolds number is com-
pared in Fig. 4 for the DNS, self-consistent, and the
amplitude approximation of the weakly nonlinear theory.
The weakly nonlinear theory is valid only close to the
critical Reynolds number as it starts to diverge from both
the DNS and self-consistent results for Re > 50. This is

because the weakly nonlinear theory is based on a pertur-
bative expansion around threshold [17], which is unsuitable
to describe spatial variations of the oscillating mode [10]
and yields an overestimated amplitude at saturation. In the
self-consistent model, this limitation is relaxed and the
resulting amplitude follows the DNS results, indicating that
the main nonlinear effects responsible for saturation are
well captured in the coupling of the mean flow and
perturbation equations in Eq. (5). As the Reynolds
number increases, however, the number of iterations
required for our direct method to converge to σ�1 ¼ 0
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FIG. 2 (color online). Comparison of the x component of the mean flows (a) and the Reynolds stress divergence (b) for Re ¼ 100
computed from DNS (top half) and predicted from Eq. (5) (bottom half, SC). Plot (c) shows horizontal and vertical cuts for y ¼ 0 (top),
x ¼ 1 (bottom left), and x ¼ 3 (bottom right), for the x component of the mean flows (U, U�), the base flow (UB), and Reynolds stress
divergence (F ¼ hðu0 ·∇Þu0i), as detailed in the legend.
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FIG. 3 (color online). Comparison of the frequency predictions
of the self-consistent model for different Reynolds numbers.
Vortex shedding frequency from experiments by Williamson [12]
(dashed black line), from the present result (blue squares), and
from the most unstable mode of the base flow (solid red line) and
the mean flow obtained from DNS (red circles).
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FIG. 4 (color online). Comparison of the vortex shedding
amplitude predictions of the self-consistent model for different
Reynolds numbers. Saturation amplitude obtained from DNS (red
circles), predicted by the self-consistent model (blue triangles),
and as given according to weakly nonlinear expansion around
threshold (dash-dotted line).
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becomes increasingly large. Similar issues for converging
to steady solutions of the NSE when increasing Re have
been reported in the literature; see Ref. [19], for instance.
The resolution of system (5) provides an excellent

approximation of the mean flow velocity field and the
perturbation’s amplitude, frequency, and spatial structure of
the Reynolds stress forcing. Moreover, Eqs. (4) constitute a
self-consistent model that formalizes and supports the idea
of an instability saturation process wherein the perturba-
tion, given by the most unstable eigenmode, grows around
the mean flow and modifies it, saturating when the mean
flow is marginally stable [5–7], in a way reminiscent to
Malkus [8] notions.
Note that some flows present positive growth rate when

linear stability is computed around the mean flow [17],
probably due to the neglected nonlinear terms in the
perturbation Eq. (4) and the presence of higher harmonics.
Nonetheless, the present model is expected to work for
other laminar globally unstable flows dominated by a single
harmonic and with a marginally stable mean flow. This
includes flows reaching limit cycles above the bifurcation,
e.g., wakes, hot jets, mixing layers with counterflow,
swirling jets, etc., but this excludes aperiodic, chaotic,
and turbulent flows. In addition, the model can be gener-
alized to harmonic forcing response in stable cases. This
can be done by applying a source term in the rhs of Eq. (5b)
and replacing the unstable mode by the linear response to
the forcing at a given frequency in Eq (5a). This method-
ology can be used to include higher harmonics in the
present case, adding linear equations for the higher har-
monics as forced by the nonlinear interactions of the
unstable mode.
The present quasilinear self-consistent model is, for

laminar flows, a deterministic counterpart of similar sto-
chastic models recently developed to describe coherent
structures in turbulent flows [20,21]. It may open new
possibilities as a model reduction for flow control [11],
since the coupled mean flow–perturbation equations are

solved as a closed system independent of time, allowing
the calculation of a mean flow approximation a priori
without requiring the full time evolution simulation for the
a posteriori mean flow extraction.
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