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We propose a superradiant metrology technique to achieve the Heisenberg limit superresolving
displacement measurement by encoding multiple light momenta into a three-level atomic ensemble.
We use 2N coherent pulses to prepare a single excitation superradiant state in a superposition of two timed
Dicke states that are 4N light momenta apart in momentum space. The phase difference between these two
states induced by a uniform displacement of the atomic ensemble has 1=4N sensitivity. Experiments are
proposed in crystals and in ultracold atoms.
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Introduction.—Measurements play a key role in physics,
not only in the direct sense of defining standards [1–3], but
also in verifying predictions of theories such as gravitational
waves [4,5]. Using N quantum resources independently,
the sensitivity of a parameter ϕ scales Δϕ ∼ 1=

ffiffiffiffi
N

p
deter-

mined by the central limit theorem. This 1=
ffiffiffiffi
N

p
scaling is the

so-called shot-noise limit [6,7], which can be broken by
squeezed states or entanglement [8–14]. For example, the
photons can be prepared in a Schrödinger cat state, such as
the N00N state [15], 1=

ffiffiffi
2

p ðjN0i þ j0NiÞ, where jN0i
means all the photons are in one arm of the interferometer
and j0Ni means all the photons are in the other arm.
According to the unbiased Cramér-Rao bound, the sensi-
tivity can be enhanced to Δϕ ∼ 1=N, the Heisenberg limit.
Another scheme to reach to the Heisenberg limit is to use
theN-atom Schrödinger cat state, the so-called Greenberger-
Horne-Zeilinger (GHZ) state [16–20].
The metrology with N00N states and GHZ states indicates

that we can improve the sensitivity of one observable by
preparing a Schrödinger cat state of its conjugate observable
[11]. The sensitivity of the displacement x can therefore be
improved by preparing a Schrödinger cat state of the
momentum p. The N00N state composed by two optical
modes with opposite momenta seems to be a good candidate,
but the fragile high photon number N00N state is very
difficult to prepare, to preserve, and to manipulate [21–27].
On the other hand, a single photon can be easily prepared
in an entangled state of two opposite momenta,
1=

ffiffiffi
2

p ðj1k0−ki þ j0k1−kiÞ [28]. To manipulate this
entangled state, we can guide it to a collection of atoms
and the momentum can be translated into the phase of the
collective excitation, 1=

ffiffiffi
2

p ðjbki þ jb−kiÞ, where

jbki≡ 1ffiffiffiffiffiffi
Na

p
XNa

j¼1

exp ðikxjÞjc1; c2;…; bj;…; cNa
i ð1Þ

is the timed Dicke state [29] and Na is the number of atoms.
Here we prepare a pencil-like atomic ensemble along x̂

direction and the wave vector k ¼ kx̂. jbji and jcji are the
excited and the ground states of the atom at position xj. A
uniform displacement of the atomic ensemble relative to the
lab reference frame including all optical devices, r0, attaches
opposite phases to the two timed Dicke states [30],
1=

ffiffiffi
2

p ðeikr0 jbki þ e−ikr0 jb−kiÞ, which can be easily verified
by replacing xj with xj þ r0 in Eq. (1). The phases can be
retrieved by the interference pattern of the photon signal
emitted in the two opposite directions, cos2 ðkr0Þ. The whole
process can be understood as follows. We first freeze the
standing wave pattern composed by the entangled two
modes �k in the atomic ensemble. Any displacement of
the atomic ensemble moves the standing wave pattern stored
in it simultaneously, which also correspondingly moves the
interference pattern of the stored single photon after it is
released. If we prepare the ensemble in an atomic N00N state
with entangled N-fold collective excitations [31], the inter-
ference pattern has N times higher resolution [30]. However,
the efficiency in preparing these repetitive N00N states drops
exponentially with N [30,32,33].
In this Letter, we show that the momentum Schrödinger

cat state

jKATðNÞi ¼ ð−1ÞNð1=
ffiffiffi
2

p
Þðjb−2Nki þ ija2NkiÞ; ð2Þ

with large number N can be prepared. Here a stands for
another atomic level and jaki is defined in the same way as
Eq. (1) by replacing b with a. Instead of atomic N00N
states with high atomic excitations, we only need single
excitation superradiant states which can be prepared with
high efficiency [34]. We propose an experimental scheme
based on ground-state Raman transitions to avoid
dephasing.
Store multiple light momenta.—To motivate the under-

lying physical mechanisms, we first show how to write
multiple light momenta into an atomic ensemble. We use a
three-level scheme as shown in Fig. 1(a). We first prepare
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the atomic ensemble in the superradiant state jb0i ¼
ð1= ffiffiffiffiffiffi

Na
p ÞPNa

j¼1 jc1; c2;…; bj;…; cNa
i by absorbing a sin-

gle photon with momentum perpendicular to the x̂ axis. In
that direction, the atomic medium is thin and the uniform
probability amplitude for each atom is easily achieved.
Then we prepare two sequences of counterpropagating π
pulses in modes k1 ¼ k1x̂ and k2 ¼ −k1x̂ [Fig. 1(b)], and
send them to the atomic ensemble alternatively, as shown in
Fig. 1(c). These two modes couple the transition from jbi to
another state jai, rather than the ground state jci. The π
pulses are represented by the following unitary transform
under the rotating-wave approximation:

Ul ¼ exp

"
i
π

2

XNa

j¼1

ðeiklxjþiϕlσþj þ e−iklxj−iϕlσ−j Þ
#
; ð3Þ

where l ¼ 1, 2 for forward and backward pulses. σþj ¼
jbjihajj and σ−j ¼ jajihbjj are the raising and lowering
operators for the jth atom. ϕl is the phase of field l.
In the following, we set ϕ1 ¼ ϕ2 ¼ 0. At time t1, we

apply U1 to jb0i,

U1jb0i ¼ ija−k1
i: ð4Þ

The atomic ensemble transits to ja−k1
i by collectively

emitting a photon in mode k1, and therefore acquires
momentum −ℏk1 based on momentum conservation. In
calculating Eq. (4) we should note that the terms σþ;−

j σþ;−
j0≠j

and the higher order ones in the expansion of Ul applied to
the single photon Dicke state lead to zero.

At time t2, we send the π pulse of k2 and the state
evolves to

U2ija−k1
i ¼ −jb−2k1

i: ð5Þ
The atomic ensemble acquires another momentum ℏk2 ¼
−ℏk1 by collectively absorbing a photon from mode k2.
The pulse pair U2U1 encodes a total momentum −2k1 in
the atomic ensemble. The above process can be repeated
for another N − 1 times and the final state becomes
ð−1ÞN jb−2Nk1

i with a large momentum −2Nℏk1. Instead
of using recoil momenta like in the atom interferometry
[35], the large effective momentum stored in the atomic
ensemble is transferred to rapid oscillations of the phase
correlation of timed Dicke states, as shown in Fig. 1(d). The
enhanced oscillation allows improved precision for meas-
uring the displacement. It is as if the ruler has a finer
graduation.
Superradiant metrology.—By combining the above

mechanism and the technique of Ramsey interferometry,
we can measure a displacement to the Heisenberg limit.
The whole scheme is sketched in Fig. 2. We first prepare a
superposition state of jb0i and ja0i. Then the π pulses drive
these two states in two opposite directions in momentum
space to obtain a momentum Schrödinger cat state.
We show the explicit procedure based on a three-level

Raman configuration which has been proved to have
decoherence time as long as 1 minute [36,37]. The atom
has three degenerate ground states which can be lifted by a
Zeeman magnetic field along x̂, as shown in Fig. 3(a). We
first pump all the atoms to state jci. An off-resonant coherent
field with x̂ polarization induces a Raman transition via

FIG. 1 (color online). (a) Three-level configuration for photon
momentum encoding. (b) Two counterpropagating modes col-
lectively couple the transition between jbi and jai. (c) Timed
Dicke state transport with π pulses of k1 (black) and k2 (blue).
They are applied alternatively to the atomic ensemble for N times
each to transfer the state from jb0i to jb−2Nk1

i. (d) The schematic
spatial phase oscillation of ja−k1

i and jb−20k1
i.

FIG. 2 (color online). Pictorial scheme of the displacement
metrology with momentum Schrödinger cat state based on
Ramsey interferometry. The white circles represent the collective
ground state jc1; c2;…; cNa

i. The red and blue circles represent
the superradiant sates jbki and jaki. The single black arrow
represent the single-photon Raman transition between the ground
state and jb0i or ja0i. The double black arrow represents the
π=2-pulse Ubaðπ=2Þ. The red and blue arrows represent the π
pulses U1 and U2 with the arrow’s direction indicating the
transition direction.
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intermediate state jdi to prepare the atomic ensemble in the
state jb0i, accompanied by the emission of a right circular
polarized Stokes photon [30,38,39], whose frequency and
polarization can be detected as signatures of a successful
preparation of the state jb0i. A Raman π=2 pulse [40] which
couples the transition from jbi to jai transforms jb0i to

Uba

�
π

2

�
jb0i ¼

1ffiffiffi
2

p ðjb0i þ ija0iÞ; ð6Þ

whereUbaðπ=2Þ¼
PNa

j¼1 ðcosðπ=4ÞIj þ i sinðπ=4ÞσxjÞ.Now
we introduce Raman transitions with combined wave
vectors k1 ¼ kbd − kda and k2 ¼ −k1, as shown in
Fig. 3(b). Here kbd and kda are the wave vectors of the two
circularly polarized modes which couple jbi↔jdi and
jdi↔jai transitions, respectively. We adopt a counterpropa-
gating configuration along the x̂ axis to achieve a maximum
combined wave vector [41].
The π pulses of these Raman transitions can still be

represented by Eq. (3). We apply U1 to the state in Eq. (6)
and we obtain 1=

ffiffiffi
2

p ðija−k1
i − jbk1

iÞ. We then apply U2 to

the above sate and we obtain −1=
ffiffiffi
2

p ðjb−2k1
i þ ija2k1

iÞ.
Repeating the above operations another N − 1 times, we
get the momentum Schrödinger cat state,

jKATðNÞi ¼ ð−1ÞN 1ffiffiffi
2

p ðjb−2Nk1
i þ ija2Nk1

iÞ: ð7Þ

Now we move the atomic ensemble collectively by a
distance r0 with a uniform optical force or gravity, etc.
[30], so that the old position xj ¼ x0j þ r0 where x0j is the
new position. jKATðNÞi is expressed in Eq. (8) with this
displacement. We must redefine the timed Dicke states with
the new positions of the atoms in the lab frame. Replacing
xj with x0j þ r0, Eq. (7) becomes

ð−1ÞN 1ffiffiffi
2

p ðe−i2Nk1r0 jb−2Nk1
i þ iei2Nk1r0 ja2Nk1

iÞ; ð8Þ

where the two timed Dicke states are redefined with x0j
and have a relative phase 4Nk1r0. The center-of-mass
Hamiltonian only brings trivial global phases. We neglect
the dynamic phase difference between the two atomic
levels, which can be easily compensated in experiments or
data analysis. To retrieve the phase, we apply the inverse
π-pulse sequences ðU1U2ÞN to the state in Eq. (8). We will
finally get

jΨi ¼ 1ffiffiffi
2

p ðe−i2Nk1r0 jb0i þ iei2Nk1r0 ja0iÞ: ð9Þ

ARaman π=2-pulseUbaðπ=2Þ transforms the above state to

−i sin ð2Nk1r0Þjb0i þ i cos ð2Nk1r0Þja0i: ð10Þ

The probability of the state jb0i, Pb ¼ sin2 ð2Nk1r0Þ can be
obtained by observing the retrieved photon via the forward
Raman transition jbi → jdi → jci after a pumping pulse
coupling jbi to jdi is applied along x̂. Here the Raman
transition jbi → jdi → jci will happen rather than jbi →
jdi → jai due to a superradiant enhancement of the vacuum
interaction for the former one [38]. The probability of ja0i,
Pa ¼ cos2 ð2Nk1r0Þ can be simultaneously measured in a
different direction. The population difference

P ¼ Pb − Pa ¼ − cos ð4Nk1r0Þ ð11Þ

is the signal from which the displacement r0 can be
measured. The noise is ΔP ¼ j sin ð4Nk1r0Þj and the phase
sensitivity

Δðk1r0Þ ¼
ΔP

j∂P=∂ðk1r0Þj ¼
1

4N
ð12Þ

scales at the Heisenberg limit.
Discussion.—It has been argued that the sensitivity in

Eq. (12) only shows the accuracy in determining the last
digits of k1r0 due to the periodicity of the signal P.
However, we can take some iterative procedure to deter-
mine all the digits without destroying the 1=N scaling
[11,13]. Especially, to verify existing theories like gravi-
tational wave, the phase change from the theoretical
prediction is small enough to be within half period of
the signal P. The improvement of the sensitivity can be
seen by expanding Pb near r0 ¼ 0, Pb ≈ 4N2k21r

2
0. The

probability of detection is enhanced by N2. As in most
interferometry experiments, r0 can be changed continu-
ously and the relevant physical quantity, like the gravita-
tional constant, can be measured from the interference
pattern rather than a single point.
The imperfection of the π pulses in amplitude and in phase

due to environmental noises, such as oscillations and
rotations of optical devices, can reduce the phase sensitivity.
We suppose the area S and the phase ϕ of the π pulses have
Gaussian distribution with variations ΔS, Δϕ≪1=

ffiffiffiffi
N

p
. The

FIG. 3 (color online). Superradiant metrology with Raman
transitions. (a) Atomic levels of Raman transitions. jai, jbi,
and jci are now the three Zeeman ground state sublevels. The
atomic ensembles are initially prepared in state jci. A single
photon Raman transition (green arrows) prepares the atomic
ensemble in a timed Dicke state of jbi. Then the Raman pulses
drive the transition between jbi and jai. (b) Raman π pulses U1

and U2. They are composed by a long pulse driving d↔a
transition and a short pulse driving b↔d transition. The short
pulse goes through the atomic ensemble when the atoms are
uniformly covered by the long pulse.
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phase sensitivity is then Δðk1r0Þ ¼ ½4Nð1 − NΔS2=2Þ�−1þ
Δϕ=

ffiffiffiffiffiffiffi
4N

p
. We simulate the interference patterns in Fig. 4 for

ΔS ¼ 0.1 and Δϕ ¼ 0.01. The superresolving metrology is
demonstrated by the reduction of the oscillation period of the
interference pattern to λ1=4N where λ1 ¼ 2π=k1 is the
effective wavelength. Although ΔS reduces the visibility
and Δϕ blurs the interference pattern, the phase sensitivities
for N ¼ 16 and 32 are still enhanced to 1=55 and 1=98,
marginally lower than the Heisenberg limit 1=64 and 1=128,
whereas, much higher than the shot-noise limit 1=8
and 1=11.
The pure dephasing between the ground states due to

environmental noise fields does not make the momentum
Schrödinger cat state more fragile as the number N
increases. Although there are 2N light momenta encoded
in the media, the ensemble only contain a single excitation
whose dephasing is independent of N. The relative motion
between the atoms will reduce the visibility by a factor
e−ϵ

2N2

, as we will discuss later. Therefore, to propose an
experimental implementation, a solid system where the
relative distance between atoms are fixed is preferred,
especially the earth-ion-doped crystal, such as
Pr3þ∶Y2SiO5 whose quantum memory storage time
reaches to 1 minute [37,41]. The three states jai, jbi,
and jci can be chosen from the ground state 3H4. The
intermediate state jdi is a sublevel of the excited state 1D2.
The Zeeman splitting can be ∼MHz. The control pulses of
U1;2 can have a duration of 10 μs to avoid transition to
unwanted levels. The prepare and read stage of the
measurement can cost time 10 ms for N ¼ 10. Then for
the transition wavelength ∼600 nm, the resolution is
7.5 nm. The crystal can free fall 100 nm within a
millisecond in the gravity field. Therefore, the whole
measurement can be completed well within the
decoherence time of 1 minute.
For a proof of principle verification of the mechanism, the

ultracold atoms can also work. The obstacle is that the
thermal motions of the atoms will randomize the relative
phase between the atoms, and reduce the visibility
P ¼ −e−2ðNk1vmτÞ2 cos ð4Nk1r0Þ, where vm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT=m
p

is the most probable velocity and τ is the overall time cost

by the measurement. The phase sensitivity is thus
Δðk1r0Þ ¼ eϵ

2N2

=4N, where ε ¼ ffiffiffi
2

p
k1vmτ, roughly the

number of wavelengths the atoms traveled. We use a
copropagating configuration in the Raman pulses to achieve
a small k1 and consequently a small ϵ. Take 87Rb as an
example [30,36], the three levels are chosen to be the three
Zeeman sublevels of 52S1=2, F ¼ 1. The intermediate state is
52P1=2, F ¼ 2, mF ¼ 0. If we use nanosecond Raman
transition pulses with GHz positive detuning, the π pulses
require a moderate average power 10 W=cm2. At temper-
ature T ∼ μK, vm ∼ 1 cm=s. We suppose the whole meas-
urement costs time τ ¼ 100 μs during which a displacement
of 10 μm can be achieved by optical force [30], whereas the
random displacement is vmτ ∼ 1 μm. If the effective wave-
length in the Raman transition is λ1 ∼ 200 μm, for a
resolution of 5 μm, we need N ¼ 10. The interference
pattern becomes P ≈ −0.82 cos ð40k1r0Þ. The phase sensi-
tivity 1=32 still exceeds the shot-noise limit 1=

ffiffiffiffiffi
40

p
∼ 1=6.

The conventional Heisenberg limit metrology by entan-
gling N atoms or photons is difficult to be realized when N
is large. Recent developments in this field achieved
5-photon N00N states [42], 8-photon GHZ states [43],
and 14-ion GHZ states [44]. The fast decoherence of
multiparticle entangled states limits their realization of
large N. Our protocol circumvents this obstacle by con-
suming the quantum resources without directly entangling
them. The physical quantity that we use is the light
momentum. We consume one photon from each light pulse
and store its momentum as a frozen spin wave of atoms.
This storage has been proved to be very robust [45]. Our
single excitation scheme has the following advantages.
First, its decoherence rate is independent of N, the number
of the quantum resources we consumed. Second, we avoid
the difficult collective detection of N particles, which is
usually required for N00N states and GHZ states. Third, we
do not need multiple passes of the probe such as in the
single photon entanglement-free scheme [28].
Atoms are not consumed in the measurement. The

number of atoms Na has no relation with the 1=N scaling.
We need Na to be large (usually in the order of 106 for cold
atoms) and distributed in a pencil-like region much longer
than λ1 for good directionality of the signal photon. We do
not have atom loss if we use crystals. For cold atoms, if the
remaining atoms are ηNa, the signal is reduced to ηP,
which has no influence on the scaling.
In conclusion, we propose a Heisenberg limit metrology

with an atomic ensemble in a momentum Schrödinger cat
state prepared by encoding multiple photon momenta into
the phase correlations of timed Dicke states. We analyzed
the feasibility of proof-of-principle experiments in
Pr3þ∶Y2SiO5 crystals and in ultracold 87Rb atoms. Since
light momenta transfer to atoms already exceeds 100 with
current technology [35], our protocol is promising to
improve the scalability of Heisenberg limit metrology by
one order.
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FIG. 4 (color online). Numerical simulation of P for Gaussian
noisy π pulses with area variation ΔS ¼ 0.1 and phase variation
Δϕ ¼ 0.01. N ¼ 16 (black squares) and 32 (red triangles).
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