
Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant
of the Technidilaton on the Lattice

Shinya Matsuzaki1,* and Koichi Yamawaki2,†
1Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan and Department of Physics,

Nagoya University, Nagoya 464-8602, Japan
2Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University,

Nagoya 464-8602, Japan
(Received 15 November 2013; revised manuscript received 2 February 2014; published 20 August 2014)

We propose a scale-invariant chiral perturbation theory of the pseudo-Nambu-Goldstone bosons of chiral
symmetry (pion π) as well as the scale symmetry (dilaton ϕ) for large Nf QCD. The resultant dilaton mass
Mϕ reads M2

ϕ ¼ m2
ϕ þ 1

4
ð3 − γmÞð1þ γmÞð2NfF2

π=F2
ϕÞm2

π þ ðchiral log correctionsÞ, where mϕ, mπ , γm,
Fπ , and Fϕ are the dilaton mass in the chiral limit, the pion mass, the mass anomalous dimension, and the
decay constants of π and ϕ, respectively. The chiral extrapolation of the lattice data, when plotted as M2

ϕ

versus m2
π , then simultaneously determines (mϕ, Fϕ) of the technidilaton in walking technicolor with

γm ≃ 1. The chiral logarithmic corrections are explicitly given.
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Since the Higgs boson was discovered at the LHC [1],
the next stage of particle physics will be to elucidate the
dynamical origin of the Higgs boson, whose mass and
coupling are free parameters within the standard model.
One theory beyond the standard model is walking techni-
color, which, based on the approximately scale-invariant
gauge dynamics, predicted a large anomalous dimension
γm ≃ 1 and a pseudo-Nambu-Goldstone (NG) boson of the
approximate scale invariance (“technidilaton”) as a light
composite Higgs boson [2]. The technidilaton was actually
shown to be consistent with current LHC data for the Higgs
boson [3,4].
A strongly coupled dynamics, walking technicolor

would need fully nonperturbative calculations in order to
make reliable estimates of the properties of the technidi-
laton and other composite particles to be compared with the
upcoming high statistics data at LHC. There has been much
work on the lattice in the search for walking technicolor [5].
Among others, the LatKMI Collaboration [6] observed a
flavor-singlet scalar meson lighter than the “pion” (corre-
sponding to the NG boson in the chirally broken phase) in
Nf ¼ 12 QCD—a theory shown [7] to be consistent with
the chirally unbroken (conformal) phase on the same lattice
setting. Such a light scalar might be a bound state generated
only in the presence of the explicit fermion mass mf in the
conformal phase. Still, it gives a good hint for the
technidilaton signature in the walking theory, which should
have a similar conformal dynamics, with the role of mf
instead played by the dynamical mass of the fermion
generated by spontaneous chiral symmetry breaking.
Amazingly, the LatKMI Collaboration also observed

indications of a light flavor-singlet scalar with comparable
mass to the pion in Nf ¼ 8 QCD [8]—a theory shown [9]
to be walking, having both signals of spontaneous chiral

symmetry breaking and a remnant of conformality. This
should be a candidate for the technidilaton as a light
composite Higgs boson in walking technicolor.
However, walking technicolor makes sense only for

vanishing fermion mass, mf ≡ 0, and hence the techinidi-
laton mass should be determined in the chiral limit. We
would need an extrapolation formula for the dilaton mass in
the same sense as the usual chiral perturbation theory
(ChPT) [10] for the lattice data measured at nonzero mf to
be extrapolated to the chiral limit.
In this Letter, we propose a scale-invariant ChPT

(sChPT) for the use of chiral extrapolation of the lattice
data on the dilaton and the pion in the presence of explicit
mass of the fermion mf. It is a scale-invariant generaliza-
tion of the usual ChPT [10], based on the nonlinear
realization of chiral symmetry in a way to realize the
symmetry structure of the underlying walking gauge
theory.
The theory consists of the pseudo-NG bosons of the

chiral symmetry (pion π, with mass mπ) as well as the scale
symmetry (dilaton ϕ, with mass Mϕ), where both sym-
metries are broken spontaneously by the fermion-pair
condensate, and also explicitly by both the fermion mass
mf and the nonperturbative scale anomaly (induced by the
same fermion-pair condensate) [11]. We obtain a tree-level
formula in M2

ϕ versus m2
π , Eq. (8), which can be plotted

linearly in such a way that the intercept determines the
chiral limit dilaton mass m2

ϕ (technidilaton mass), while its
slope gives the technidilaton decay constant Fϕ, defined as
h0jDμð0ÞjϕðqÞi¼−iFϕqμ, and hence h0j∂μDμð0ÞjϕðqÞi ¼
−FϕM2

ϕ, where DμðxÞ is the dilatation current. Based on
the sChPTwe also explicitly calculate one-loop corrections
of the chiral logarithm, Eq. (10), which turn out to be
negligibly small in current lattice simulations.
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Let us start with the chiral and/or scale Ward-Takahashi
(WT) identities for the axialvector (Jaμ5 ) [dilatation (Dμ)]
currents in the underlying walking gauge theory with Nf-
fermion fields (ψ):

θμμ ¼ ∂μDμ ¼ βNPðαÞ
4α

G2
μν þ ð1þ γmÞNfmfψ̄ψ ;

∂μJ
aμ
5 ¼ 2mfψ̄iγ5Taψ ; ð1Þ

where Ta (a ¼ 1;…; N2
f − 1) are the SUðNfÞ generators

and βNPðαÞ is the nonperturbative β function for the
nonperturbative running [12] of the gauge coupling α
due to the mass scale Λχ dynamically generated by the
spontaneous breaking of the chiral and scale symmetries
through the condensate hðψ̄ψÞμ¼Λχ

i ∼ −Λ3
χ . ðβNPðαÞ=

4αÞG2
μν is the nonperturbative trace (scale) anomaly

[11,13] defined as a part associated with the nonpertubative
running and is induced solely by the chiral condensate with
the scale Λχ : hðβNPðαÞ=4αÞG2

μνijmf¼0 ∼ −Λ4
χ .

We now formulate the sChPT so as to reproduce these
WT identities. The building blocks φðxÞ to construct
the sChPT are φðxÞ ¼ fUðxÞ; χðxÞ;MðxÞ; SðxÞg. UðxÞ ¼
e2iπðxÞ=Fπ , π ≡ πaTa, is the usual chiral field with the pion
decay constant Fπ , and χðxÞ ¼ eϕðxÞ=Fϕ with the dilaton
field ϕðxÞ and the decay constant Fϕ. MðxÞ and SðxÞ are
spurion fields introduced so as to incorporate explicit
breaking effects of the chiral and scale symmetry, respec-
tively. Under the chiral SUðNfÞL × SUðNfÞR symmetry,
these building blocks transform as UðxÞ → gL ·UðxÞ · g†R,
MðxÞ → gL ·MðxÞ · g†R, χðxÞ → χðxÞ, and SðxÞ → SðxÞ,
with gL;R ∈ SUðNfÞL;R. Under the scale symmetry they
are infinitesimally transformed as δUðxÞ ¼ xν∂νUðxÞ,
δMðxÞ¼xν∂νMðxÞ, δχðxÞ¼ð1þxν∂νÞχðxÞ, and δSðxÞ ¼
ð1þ xν∂νÞSðxÞ, with scale dimensions dU ¼ dM ¼ 0,
dχ ¼ dS ¼ 1. The rule of chiral-order counting [10] is thus
determined consistently with both the scale and chiral
symmetries: U ∼ χ ∼ S ∼Oðp0Þ, M ∼mf ∼Oðp2Þ,
∂μ ∼mπ ∼Mϕ ∼OðpÞ, where mπ and Mϕ are pion and
dilaton masses arising from the vacuum expectation values
of the spurion fields M and S, hMi ¼ m2

π × 1Nf×Nf
,

and hSi ¼ 1.
We first consider the chiral limit mf → 0. To the leading

order Oðp2Þ of sChPT, the chiral Lagrangian for the scale-
invariant action is uniquely determined as [14]

Linv
ð2Þ ¼

F2
ϕ

2
ð∂μχÞ2 þ

F2
π

4
χ2tr½∂μU†∂μU�: ð2Þ

As noted above, even in the chiral limit, the scale symmetry is
explicitly broken by the dynamical generation of the fermion
mass itself in the underlying walking gauge theory (“hard-
scale anomaly,” or scale violation by the marginal operator)
characteristic to the conformal phase transition [15].

Hence, we have 4E ¼ hθμμimf¼0 ¼ Fϕ=dθh0jθμμjϕimf¼0 ¼
Fϕ=4h0j∂μDμjϕimf¼0 ¼ −ðF2

ϕm
2
ϕ=4Þ < 0 [partially con-

served dilatation current (PCDC) relation] [16], where mϕ

denotes the chiral-limit dilaton mass and we understand that
the scale dimension of θμμ is equal to the canonical dimension,
dθ ¼ 4, for mf ¼ 0.
We may incorporate the corresponding explicit breaking

terms, involving the spurion field S, to make the action
formally scale invariant [17]:

LS
ð2Þhard ¼ −

F2
ϕ

4
m2

ϕχ
4

�
log

χ

S
−
1

4

�
: ð3Þ

This is a unique form having scale dimension four, which
correctly reproduces the underlying nonperturbative scale
anomaly ðβNPðαÞ=4αÞhG2

μνi in the scale WT identity,
Eq. (1), in the chiral limit mf → 0. In fact, when
hSi ¼ 1, a noninvariant term arises from log χ to yield
the scale anomaly hθμμi ¼ h∂μDμi ¼ hδLS

ð2Þhardi ¼
−F2

ϕm
2
ϕhχ4i=4, in accord with the PCDC relation. The

last factor, −1=4, yields a correct vacuum energy
E ¼ h−LS

ð2Þhardi ¼ −F2
ϕm

2
ϕ=16 ¼ hθμμi=4.

As was discussed in Ref. [18], the explicit breaking
terms due to the fermion current mass mf may also be
introduced so as to reproduce the chiral WT identity in
Eq. (1):

LS
ð2Þsoft ¼

F2
π

4

�
χ

S

�
3−γm

S4tr½M†U þ U†M�

−
ð3 − γmÞF2

π

8
χ4ðNftr½M†M�Þ1=2: ð4Þ

The factor (3 − γm) in the first line reflects the full
dimension of the fermion bilinear operator ψ̄ψ in the
underlying gauge theory. The scale-invariant term in line
two, having no contributions to θμμ, was introduced in the
case without the hard-scale anomaly termLS

ð2Þhard [18,19] in
order to stabilize the dilaton potential so as to make the
otherwise tachyonic dilaton mass term positive, M2

ϕ > 0.
The Lagrangian for the scale-invariant and chirally

invariant action at leading order Oðp2Þ is thus constructed
from terms in Eqs. (2)–(4):

Lð2Þ ¼ Linv
ð2Þ þ LS

ð2Þhard þ LS
ð2Þsoft: ð5Þ

From this we finally read off the dilaton mass term ϕ2

as [20]

M2
ϕ ¼ m2

ϕ þ ð1þ γmÞð3 − γmÞ
NfF2

πm2
π

2F2
ϕ

: ð6Þ

Our result can also be derived directly from the underlying
gauge theory through Eq. (1) as [21]
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h0jθμμjϕi ¼ h0j βNPðαÞ
4α

G2
μνjϕi

þ ð1þ γmÞNfmfh0jψ̄ψ jϕi: ð7Þ

We may further rewrite the dilaton mass, Eq. (6), in a form
convenient for lattice simulations:

M2
ϕ ¼ m2

ϕ þ sm2
π;

s≡ ð3 − γmÞð1þ γmÞ
4

2NfF2
π

F2
ϕ

≃ 2NfF2
π

F2
ϕ

≡ r; ð8Þ

where the prefactor ð3 − γmÞð1þ γmÞ=4 ¼ 1 − ðδ=2Þ2 ≃ 1
[δ≡ 1 − γm; ðδ=2Þ2 ≪ 1] is very insensitive to the exact
value of γm as long as γm ≃ 1 in walking gauge theory.
This is our main result. It is useful for determining

simultaneously the chiral limit values of both the mass mϕ

and the decay constant Fϕ of the flavor-singlet scalar
meson as the technidilaton of walking technicolor on the
lattice. Simultaneously fitting the intercept and the slope of
a plot ofM2

ϕ versus m2
π from the lattice data would givem2

ϕ

(intercept) and Fϕ through the slope parameter s≃ r≡
2NfF2

π=F2
ϕ [22]. For a given Nf all the quantities γm, Fπ ,

Fϕ, and mπ in the expression of the slope parameter s can
be measured separately in lattice simulations on the same
set up. Hence, measuring s would be a self-consistency
check of the simulations as a dilaton observation, when
compared with the value of Fϕ determined by some other
way. In Fig. 1 we present plots ðx; yÞ ¼ ðm2

π;M2
ϕÞ of mock-

up data for the general case s≃ r ¼ ð0.2; 0.5; 1.0Þ in the
one-family model, Nf ¼ 8 (4 weak doublets) with the
electroweak (EW) scale related to the pion decay constant

as Fπ ¼ vEW=
ffiffiffi
4

p ≃ 123 GeV, by normalizing the masses
to a chiral breaking scale Λχ ¼ 4πFπ=

ffiffiffiffiffiffi
Nf

p
. The first

number (s ¼ 0.2) corresponds to a phenomenologically
favorable value [3,4], Fϕ ≃ ffiffiffiffiffiffiffiffiffi

2Nf
p

Fπ=0.44≃ 1.1 TeV,
consistent with the current Higgs boson data at LHC.
The third one (s ¼ 1.0) is the holographic estimate in the
large Nc limit [4]. The second value (s ¼ 0.5) is just a
sample number in between. The close-up window on the
top left-hand panel in the figure shows that the dilaton mass
gets larger than mπ when the ChPT expansion parameter
X≡m2

π=Λ2
χ¼Nfm2

π=ð4πFπÞ2≲0.06ð0.1Þ for s ¼ 0.2ð0.5Þ.
Note also that for s < 1, there exists a crossing point where
M2

ϕ < m2
π changes to M2

ϕ > m2
π near the chiral limit, as

noted in Ref. [8].
As in the case of the usual ChPT [10], chiral logarithmic

corrections at the loop level would modify the chiral scaling
of the dilaton mass formula in Eq. (8). Since the dilaton
remains massive in the chiral limit due to the nonperturba-
tive scale anomaly, only the pion loop corrections become
significant for the chiral scaling of the dilaton mass. Such
chiral logarithmic corrections will be operative in the soft-
pion region mπ ≲Mϕ (corresponding to the region where
ChPT is valid: X ≡m2

π=Λ2
χ ≲ 0.1 in Fig. 1). We shall

compute the chiral logarithmic corrections coming from the
pion loops arising from the vertices at the leading Oðp2Þ
Lagrangian Eq. (5). Those corrections softly break the scale
symmetry by the form ∼ð1; rÞ⋅X logX when the cutoff Λ is
identified with Λχ , which will be renormalized by the soft-
breaking Oðp4Þ counterterms proportional to m2

π ∼M.
Using dimensional regularization [23], we thus find the

D ¼ 4 pole (logarithmically divergent) contributions to the
terms in quadratic order of dilaton fields:

1

2
ZFϕ

∂μϕ∂μϕ −
1

2
~m2
ϕϕ

2; ð9Þ

where

ZFϕ
¼ 1þ r

N2
f − 1

2N2
f

X log
Λ2

m2
π
;

~m2
ϕ ¼

�
m2

ϕ − rm2
π

2ðN2
f − 1Þ
N2

f

X log
Λ2

m2
π

þ ð3 − γmÞð1þ γmÞ
4

rm2
πZFϕ

Z−1
Fπ
Z−1
mπ

�
;

with Zði¼Fπ ;mπÞ ¼ 1þ ðΓi=NfÞX logðΛ2=m2
πÞ and ΓFπ

¼
Nf=4 and Γmπ

¼ −1=Nf. After renormalizing the divergent
parts at the renormalization scale μ [24] and defining
the renormalized dilaton field ϕr ¼

ffiffiffiffiffiffiffiffi
ZFϕ

p
ϕ, we find the

renormalized ϕ2 terms, 1
2
∂μϕr∂μϕr − 1

2
M2

ϕϕ
2
r , with the

dilaton mass including the chiral logarithmic corrections
of Oðp4Þ:

0 1 2 3 4 5
0

1

2

3

4

5

m2 2

M
2

2

FIG. 1 (color online). A plot of M2
ϕ=Λ

2
χ with respect to

m2
π=Λ2

χð≡XÞ obtained from Eq. (8), with Nf ¼ 8 and Fπ ¼
123 GeV and the chiral-limit dilaton mass mϕ ¼ 125 GeV. The
slope s≃ r ¼ 2NfF2

π=F2
ϕ in Eq. (8) has been taken to be 0.2

(solid black line), 0.5 (dashed black line), and 1.0 (dotted black
line). The solid red line corresponds toM2

ϕ ¼ m2
π . The inset figure

just denotes the close-up window for the small pion mass region.
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M2
ϕ ¼ m2

ϕ

�
1þ r

N2
f − 1

2N2
f

X log
m2

π

μ2

�

þ rm2
π

�
2ðN2

f − 1Þ
N2

f

X log
m2

π

μ2

�

þ sm2
π

�
1þ N2

f − 4

4N2
f

X log
m2

π

μ2

�

þ ðcounterterms renormalized at μÞ: ð10Þ

We may assume that all the counterterms in Eq. (10)
vanish at μ ¼ Λχ , so that they are induced only by the
pion loops in the sChPT. As a concrete example, we again
consider the one-family model with Nf ¼ 8 and
Fπ ¼ 123 GeV, and take the factor s≃ r ¼ 2NfF2

π=F2
ϕ ¼

0.2, 1.0 and the chiral-limit dilaton massmϕ ¼ 125 GeV in
the light of the LHC. In Fig. 2 we plot the chiral scaling
behavior of the dilaton mass for a small pion mass region
X ≡m2

π=Λ2
χ ≲ 0.1, including the chiral logarithmic correc-

tions from the pions at the one-loop level for s ¼ 0.2 and
1.0 (solid black and blue curves). Also plotted is the
leading-order formula in Eq. (8) (dashed black and blue
curves). The figure implies that the chiral logarithmic effect
may be appreciable for the soft-pion mass region. However,
such chiral logarithmic effects are negligibly small for the
current status of Nf ¼ 8 QCD on the lattice, where
simulations have been performed for a larger pion mass
region 3≲ X ≲ 5 [9].
In conclusion, we have established a scale-invariant

chiral perturbation theory for the pseudo-NG bosons, the
pion (π), and the dilaton (ϕ), which will be useful in its own
right in various situations. It is straightforward [25] to
include the vector mesons into this framework via hidden
local symmetry [26]. As its prominent consequence, we

obtained a formula relating the masses M2
ϕ versus m2

π ,
Eq. (8) (tree), or Eq. (10) (one loop), which we believe
plays a vital role for making chiral extrapolations of lattice
data of the flavor-singlet scalar meson, thereby obtaining
the mass (mϕ) and decay constant (Fϕ) of the technidilaton
as a composite Higgs boson in walking technicolor.

We express our sincere thanks to all the members of the
LatKMI Collaboration for helpful discussions and infor-
mation. This work was supported in part by the JSPS
Grant-in-Aid for Scientific Research (S) No. 22224003 and
(C) No. 23540300 (K.Y.).

Note added.—Recently, the LatKMI Collaboration pub-
lished a paper [27] (follow-up of Ref. [8]) finding a light
flavor-singlet scalar in Nf ¼ 8 QCD, with the data ana-
lyzed based on Eq. (8) to be roughly consistent with
125 GeV Higgs boson as the technidilaton.
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