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We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge
and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of
complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we
use twistors rather than vectors to represent this space. Although superficially similar to the original twistor
string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet
spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the
ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer
requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having
substantially reduced moduli. These are supported on the solutions to the scattering equations refined
according to helicity and can be checked by comparison with corresponding formulas of Witten and of
Cachazo and Skinner.
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Introduction.—The twistor string theories of Witten,
Berkovits, and Skinner [1–3] not only led to remarkable
new formulas for tree-level scattering amplitudes but also
provided a tantalizing paradigm for how twistor theory
might eventually make contact with physics. However, it is
still a long way from being fully realized both because of
the reliance on maximal supersymmetry of these models
and the lack of a clear route to an extension to a critical
model in which loop calculations will make sense. More
recently, it has become clear that there are many such
remarkable tree-level formulas for scattering amplitudes
[4–10]. One family [9] was seen to arise naturally from
string theories in ambitwistor space, the space of complex
null geodesics [11]. Such ambitwistor spaces can be
defined in all dimensions, and the string is critical in 10
dimensions. It provides an infinite tension chiral limit of the
conventional Ramond-Neveu-Schwarz superstring. An
important advantage over the original twistor strings is
that it extends naturally to provide a tentative candidate for
the full field theory all-loop integrand [12] (albeit one that
is likely to reproduce standard field theory divergences).
Ambitwistor strings can be defined almost algorithmi-

cally by complexifying the action for a spinning massless
particle. While the focus of Ref. [11] was the Ramond-
Neveu-Schwarz model, we specialize to four spacetime
dimensions in this Letter. Ambitwistor space then has an
alternative spinorial representation in which the constraints
P2 ¼ 0 are explicitly solved. The resulting ambitwistor
string models arise as the complexifications of the four-
dimensional Ferber superparticle [13]. Indeed, the original
twistor string was similarly interpreted in Refs. [14,15], and
the similarity with the ambitwistor approach was also
remarked upon in Refs. [11,16]. Using the spinorial
representation as the target space, we construct ambitwistor

string models for Yang-Mills theory and gravity in four
dimensions with any amount of supersymmetry. These
models yield remarkably simple new formulas for the tree-
level scattering amplitudes that are parity invariant, sup-
ported on the scattering equations, and dependent on very
few moduli. There is also a reasonably clear route to an
extension to a critical theory that will be valid at loops by
reduction from a critical model such as that in Ref. [17].
Ambitwistor strings in four dimensions.—Projective

ambitwistor space PA is a supersymmetric extension of
the space of complex null geodesics. In four dimensions,
ambitwistor space can be expressed as a quadric Z⋅W ¼ 0
inside PT × PT�. Here, we work with N supersymmetries
so that Z ¼ ðλα; μ _α; χrÞ ∈ T ¼ C4jN , W ¼ ð~μ; ~λ; ~χÞ ∈ T �
with χ; ~χ fermionic, α ¼ 0; 1, _α ¼ _0; _1 chiral spinor indices,
and r ¼ 1;…N R-symmetry indices. Ambitwistor space A
is the set Z⋅W ¼ 0 where

Z⋅W ≔ λα ~μ
α þ μ _α ~λ _α þ χr ~χr;

where we also quotient by the scalings ϒ − ~ϒ where
ϒ ¼ Z⋅∂=∂Z and ~ϒ ¼ W⋅∂=∂W. We also have the
incidence relations

μ _α ¼ iðxα _α þ iθrα ~θ _α
r Þλα; χr ¼ θrαλα;

~μα ¼ −iðxα _α − iθrα ~θ _α
rÞ~λ _α; ~χr ¼ ~θ _α

r
~λ _α; ð1Þ

which realize a point (x, θ, ~θ) in (nonchiral) super-
Minkowski space as a quadric CP1 × CP1 parametrized
by (λ, ~λ). It is easily seen that these lie inside the set
Z⋅W ¼ 0, and indeed, these are the only quadrics in PA of
that degree. To make contact with null geodesics, the
momenta can be defined to be Pα _α ¼ λα ~λ _α, which now
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automatically satisfy the constraint P2 ¼ 0. The symplectic
potential is Θ ¼ ði=2ÞðZ⋅dW −W⋅dZÞ.
Our ambitwistor string consists of world sheet fields

(Z,W) that are spinors on the world sheet Riemann surface
Σ and take values in T × T�. The action is based on the
symplectic potential and the constraint Z⋅W ¼ 0 imposed
by Lagrange multiplier a, a (0,1) form on Σ, so that

S ¼ 1

2π

Z
Σ
W⋅∂̄Z − Z⋅∂̄W þ aZ⋅W:

There is a gauge symmetry associated with a that quotients
by ϒ − ~ϒ. A key difference between this theory and the
original Berkovits-Witten theory is that we fix (Z,W) to be
spinor fields on the world sheet.
After adding world sheet gravity by starting with the

operator ∂̄ þ e∂, we gauge fix e ¼ 0 leading to a ghost
(b, c) system. Similarly, we gauge fix a to obtain the natural
∂̄ operator on the spin bundle and introduce associated
ghosts (u, v). We end up with a BRST operator

Q ¼
Z

cT þ uZ⋅W

where T is the world sheet stress tensor. This will be
anomalous (i.e., Q2 ≠ 0) in general, although there should
be choices of matter that give an anomaly free theory.
At tree level, however, this will not be relevant, and the
ghost system will serve to give the GLð2;CÞ quotients that
are needed in the tree-level formulas. Amplitudes will be
obtained as correlation functions of vertex operators. In the
following, we will just give integrated vertex operators
(they simply differ by a factor of c from their unintegrated
counterparts) and will instead just divide by the volume of
GLð2;CÞ in the final formula, understood in the usual
Faddeev-Popov sense.
Yang-Mills amplitudes.—Yang-Mills vertex operators

arise from general wave functions α that are ∂̄ closed
(0,1) forms multiplied by the currents J⋅ta of some current-
algebra J associated to some Lie algebra, of which the ta
are elements (hereon a ¼ 1;…; n indexes particle number),
to give Va ¼

R
Σ αJ⋅ta. In general, such an α corresponds to

an off-shell Maxwell field on space-time, but if it extends
off PA into PT × PT� to third order or beyond, it must be
on shell (see for example Ref. [18]), and only when on shell
is it manifestly Q closed. On shell, such wave functions are
a sum of wave functions pulled back from either twistor
space or dual twistor space, thus, leading to two different
types of vertex operators. For momentum eigenstates,

Va
0 ¼

Z
dsa
sa

δ̄2ðλa − saλÞeisað½μ ~λa�þχr ~ηarÞJ⋅ta; ð2Þ

~Va ¼
Z

dsa
sa

δ̄2ð~λa − sa ~λÞeisaðh ~μ λaiþ~χrη
r
aÞJ⋅ta; ð3Þ

where for a complex variable z, δ̄ðzÞ ¼ ∂̄ð1=ð2πizÞÞ. These
can be seen to be straightforwardly Q invariant. However,
having the supersymmetry in this form will be inconvenient
in what follows. A more convenient representation is
obtained by a Fourier transform of the ~ηs into ηs in the
first type of vertex operator,

Va ¼
Z

dsa
sa

δ̄2jN ðλa − saλjηa − saχÞeisa½μ ~λa�J⋅ta; ð4Þ

where for a fermionic variable χ, δðχÞ ¼ χ. We obtain
full N ¼ 4 Yang-Mills amplitudes with the above vertex
operators for N ¼ 3 (with r ¼ 1;…;N ¼ 4 we would
have double the spectrum).
Nk−2MHV Yang-Mills amplitudes will be obtained as

correlation functions of the above vertex operators taking k
from dual twistor space and n − k from twistor space:

A ¼ h ~V1… ~VkVkþ1…Vni:
The current algebra correlator gives the Parke-Taylor
denominator (together with some multitrace terms that we
will ignore for the purposes of this Letter). As in Ref. [11],
rather than attempt to compute the infinite number of
contractions required by the exponentials, we instead take
the exponentials into the action to provide sources

Z
Σ

Xk
i¼1

isiðh~μλiiþ ~χ⋅ηiÞδ̄ðσ−σiÞþ
Xn

p¼kþ1

isp½μ ~λp�δ̄ðσ−σpÞ:

The equations of motion for Z and W are then

∂̄σZ ¼ ∂̄ðλ; μ; χÞ ¼ Xk
i¼1

siðλi; 0; ηiÞδ̄ðσ − σiÞ;

∂̄σW ¼ ∂̄ð ~μ; ~λ; ~χÞ ¼ Xn
p¼kþ1

spð0; ~λp; 0Þδ̄ðσ − σpÞ: ð5Þ

Since (Z, W) are world sheet spinors, the solutions are
uniquely given by

ZðσÞ ¼ ðλ; μ; χÞ ¼
Xk
i¼1

siðλi; 0; ηiÞ
σ − σi

;

WðσÞ ¼ ð~μ; ~λ; ~χÞ ¼
Xn

p¼kþ1

spð0; ~λp; 0Þ
σ − σp

: ð6Þ

With this, we are left with the integrals

A ¼
Z

1

VolGLð2;CÞ
Yn
a¼1

dsadσa
saðσa − σaþ1Þ

Yk
i¼1

δ̄2ð~λi − si ~λÞ

×
Yn

p¼kþ1

δ̄2jN ðλp − spλðσpÞ; ηp − spχðσpÞÞ: ð7Þ
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We can write this in terms of homogeneous coordinates on
the Riemann sphere σα ¼ ð1=sÞð1; σÞ using the notation
ði jÞ ¼ σiασ

α
j (with indices raised and lowered by the usual

skew symmetric ϵαβ) as follows,

ZðσÞ¼
Xk
i¼1

ðλi;0;ηiÞ
ðσσiÞ

; WðσÞ¼
Xn

p¼kþ1

ð0; ~λp;0Þ
ðσσpÞ

ð8Þ

(where we have rescaled W and Z by a factor of 1=s) and

A ¼
Z

1

VolGLð2;CÞ
Yn
a¼1

d2σa
ða aþ 1Þ

Yk
i¼1

δ̄2ð~λi − ~λðσiÞÞ

×
Yn

p¼kþ1

δ̄2jN ðλp − λðσpÞ; ηp − χðσpÞÞ: ð9Þ

For notational simplicity, we have taken the color order
to be ð1;…; nÞ; of course, any other choice will just lead to
the obvious reordering of the Parke-Taylor denominator.
There are 2n bosonic delta functions and 2n − 4 integrals,
the −4 coming from the VolðGLð2;CÞÞ quotient, yielding
four momentum-conserving delta functions. Momentum
conservation can be seen from

Xn
p¼kþ1

λp ~λp ¼
Xn

p¼kþ1

~λp
Xk
j¼1

λj
ðp jÞ ¼ −

Xk
j¼1

λj ~λj;

where we used the first (second) set of delta functions
in Eq. (9) to get the first (second) equality. Similarly,P

n
a¼1

~λaηa ¼ 0.
Defining PðσÞ ¼ λðσÞ~λðσÞ, the scattering equations

λαa ~λ
_α
aPα _αðσaÞ ¼ 0 also follow on the support of the delta

functions. Indeed, these are here refined to give just those
appropriate to the NkMHV degree as

½~λi ~λðσiÞ�¼0; i¼1;…;k; hλpλðσpÞi¼0; p¼kþ1;…;n:

The formula (9) can be verified atN ¼ 0 by comparison
with Witten’s formula 3.22 in Ref. [4] (or analagous
formulas in Ref. [8]) and extended to arbitrary N by
superconformal invariance. This comparison follows by
integrating out 2n of the 4n moduli in Witten’s formula
against 2n of the delta functions leaving just those for
the 2n homogeneous coordinates ua. This determines λðuÞ
and ~λðuÞ and leads directly to our formula after identifying
ui ¼ σi=

Q
n
j¼kþ1ðσj σiÞ for i ¼ 1;…; k (see Ref. [19] for

more details).
This model will also have vertex operators leading to

amplitudes of a nonminimal conformal gravity like that of
Berkovits and Witten for the original twistor string.
Einstein gravity amplitudes.—For Einstein gravity, we

construct an ambitwistor analogue of David Skinner’s
model [3] as follows. This model has fields (Z, W) that

are world sheet spinors with values in T × T� as before
and (ρ, ~ρ) again in T × T � but with opposite statistics
(i.e., taking values in CN j4 rather than C4jN ). In order to
break conformal invariance we introduce infinity twistors
IIJ and IIJ that in general can encode a cosmological
constant and a gauging of R symmetry but are rank 2 in the
simplest zero cosmological constant ungauged case that we
will work with here setting IIJZI

1Z
J
2 ¼ hλ1λ2i ¼∶hZ1; Z2i

and IIJW1IW2J ¼ ½~λ1 ~λ2� ¼∶½W1;W2�. We, furthermore,
gauge the following currents

Ka ¼ ðZ⋅W; ρ⋅~ρ;W⋅ρ; ½W; ~ρ�; Z⋅~ρ; hZ; ρi; hρ; ρi; ½~ρ; ~ρ�Þ;

which leads to the introduction of the corresponding weight
zero ghosts (βa, γa), together with the fermionic (b, c)
ghosts as before [20]. These lead to a BRST Q operator

Q ¼
Z

cT þ γaKa −
i
2
βaγ

bγcCa
bc; ð10Þ

where Ca
bc are the structure constants of the current

algebra Ka.
In this Einstein gravity model, Q invariance implies that

vertex operators are built from ∂̄ closed (0,1) forms h of
weight 2 on twistor space and similarly ~h from dual twistor
space. For momentum eigenstates, h and ~h are given by

ha ¼
Z

dsa
s3a

δ̄2jN ðλa − saλjηa − saχÞeisa½μ ~λa�; ð11Þ

~ha ¼
Z

dsa
s3a

δ̄2ð~λa − sa ~λÞeisaðh ~μ λaiþ~χrη
r
aÞ: ð12Þ

These yield two types of vertex operators, appearing in
integrated or unintegrated form, here integration being with
respect to ghost zero modes. The ghosts γ ¼ ðγ3; γ4Þ,
ν ¼ ðγ5; γ6Þ each have one zero mode, and these can be
fixed by the insertion of one each of the unintegrated vertex
operators

Vh ¼
Z
Σ
δ2ðγÞh; ~V ~h ¼

Z
Σ
δ2ðνÞ ~h:

As usual, the remaining states are represented by integrated
vertex operators

Vh ¼
Z �

W;
∂h
∂Z

�
þ
�
~ρ;

∂
∂Z

�
ρ⋅
∂h
∂Z ; ð13Þ

~V ~h ¼
Z �

Z;
∂ ~h
∂W

�
þ
�
ρ;

∂
∂W

�
~ρ⋅

∂ ~h
∂W : ð14Þ

For full N ¼ 8 supergravity, we can again use the above
vertex operators for N ¼ 7. This suggests an interesting
connection with Hodges’ N ¼ 7 formalism [21].
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Amplitudes are now given by the world sheet correlation
function

M ¼
�
~V ~h1

Yk
i¼2

~V ~hi

Yn−1
p¼kþ1

VhpVhn

�
: ð15Þ

A correlator of a fermion system, here (ρ, ~ρ), is the
determinant of a matrix of possible contractions. Here,
we extend this to the following n × n matrix:

H ¼
�
H 0

0 ~H

�
;

where, for i; j ∈ f1;…; kg and p; q ∈ fkþ 1;…; ng

Hij ¼
hi ji
ði jÞ ; i ≠ j; Hii ¼ −

Xk
j¼1;j≠i

Hij; ð16Þ

~Hpq ¼
½pq�
ðpqÞ ; p ≠ q; ~Hpp ¼ −

Xn
q¼kþ1;q≠p

~Hpq: ð17Þ

The off-diagonal element Hij is the contraction of the ρ
term in the ith vertex operator with the ~ρ term in the jth, and
the diagonal elements ofH come from the remaining terms
in the integrated vertex operators. Repeating the steps for
Yang-Mills theory, we obtain for gravity amplitudes

M ¼
Z Q

n
a¼1 d

2σa
VolGLð2;CÞ det

0ðHÞ
Yk
i¼1

δ̄2ð~λi − ~λðσiÞÞ

×
Yn

p¼kþ1

δ̄2jN ðλp − λðσpÞ; ηp − χðσpÞÞ; ð18Þ

where det0H is the determinant omitting a row and column
from each of ~H and H corresponding to the unintegrated
vertex operators; the answer is independent of this choice
because each has kernel ð1;…; 1Þ.
The equivalence to the formula of Ref. [6] is seen by

following the Yang-Mills strategy and making judicious
identifications of reference spinors with the given σa [19].
Conclusion.—Ambitwistor strings provide a chiral infin-

ite tension limit of conventional strings. Here, we have
formulated them in four space-time dimensions in terms of
twistors and dual twistors, leading to remarkably simple
new formulas for tree amplitudes for (super) Yang-Mills
and (super) gravity. These are nontrivially related to
previous twistor string formulas, as we describe in detail
in Ref. [19]. Our gravitational formula is similar to the link
representation of Ref. [22], and so one can regard ambit-
wistor strings as providing the theory underlying such
representations.
There are many directions for future exploration. One

important question regards the representation of loop

amplitudes. Although our model is sufficient for computing
tree-level amplitudes, in general it is noncritical and
anomalous (the gauge anomalies require N ¼ 4 for the
first model and N ¼ 8 for the Einstein gravity model,
which suggest a doubling of the spectrum in our context).
On the other hand, it is likely that a critical, anomaly-free
theory can be obtained by coupling to appropriate matter
as, for example, that obtained by reduction from an
anomaly-free theory in 10 dimensions [11,12,17]. It might
then be possible to represent loop amplitudes as integrals
over higher genus moduli spaces of maps.
An issue raised by the gauging associated with a is the

validity of our imposition of the choice of degree of the line
bundles on Σ in which (Z, W) take their values. Often one
would sum over the degrees of the line bundle spanned by
ϒ − ~ϒ as will be discussed in more detail in Ref. [19]
where it will be seen that different choices give the same
answer or zero, so the answer is only changed by an overall
constant.
Another direction is the generalization of our formulas

to nonzero cosmological constant; our model already
allows for this, leading to nonzero entries in the off-
diagonal blocks of H, and could provide an efficient
method for computing tree-level correlation functions in
AdS4 and dS4. These can be compared to the formulas of
Refs. [23,24] and may in turn have applications to the
AdS4=CFT3 correspondence and cosmology.

We would like to thank Andrew Hodges and David
Skinner for helpful discussions. A. L. is supported by a
Simons Postdoctoral Fellowship, Y. G. is supported by the
EPSRC and the Mathematical Prizes fund, and L. M. is
supported by EPSRC Grant No. EP/J019518/1.

[1] E. Witten, Commun. Math. Phys. 252, 189 (2004).
[2] N. Berkovits, Phys. Rev. Lett. 93, 011601 (2004).
[3] D. Skinner, arXiv:1301.0868.
[4] E. Witten, Adv. Theor. Math. Phys. 8, 779 (2004).
[5] A. Hodges, arXiv:1204.1930.
[6] F. Cachazo and D. Skinner, Phys. Rev. Lett. 110, 161301

(2013).
[7] F. Cachazo, L. Mason, and D. Skinner, SIGMA 10, 051

(2014).
[8] F. Cachazo, S. He, and E. Y. Yuan, arXiv:1306.6575.
[9] F. Cachazo, S. He, and E. Y. Yuan, arXiv:1307.2199.

[10] F. Cachazo, S. He, and E. Y. Yuan, J. High Energy Phys. 07
(2014) 033.

[11] L. Mason and D. Skinner, J. High Energy Phys. 07 (2014)
048.

[12] T. Adamo, E. Casali, and D. Skinner, J. High Energy Phys.
04 (2014) 104.

[13] A. Ferber, Nucl. Phys. B132, 55 (1978).
[14] W. Siegel, arXiv:hep-th/0404255.
[15] N. Berkovits, “Twistors in superstring theory”.
[16] I. Bandos, arXiv:1404.1299.
[17] N. Berkovits, J. High Energy Phys. 03 (2014) 017.

PRL 113, 081602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

081602-4

http://dx.doi.org/10.1007/s00220-004-1187-3
http://dx.doi.org/10.1103/PhysRevLett.93.011601
http://arXiv.org/abs/1301.0868
http://dx.doi.org/10.4310/ATMP.2004.v8.n5.a1
http://arXiv.org/abs/1204.1930
http://dx.doi.org/10.1103/PhysRevLett.110.161301
http://dx.doi.org/10.1103/PhysRevLett.110.161301
http://dx.doi.org/10.3842/SIGMA.2014.051
http://dx.doi.org/10.3842/SIGMA.2014.051
http://arXiv.org/abs/1306.6575
http://arXiv.org/abs/1307.2199
http://dx.doi.org/10.1007/JHEP07(2014)033
http://dx.doi.org/10.1007/JHEP07(2014)033
http://dx.doi.org/10.1007/JHEP07(2014)048
http://dx.doi.org/10.1007/JHEP07(2014)048
http://dx.doi.org/10.1007/JHEP04(2014)104
http://dx.doi.org/10.1007/JHEP04(2014)104
http://dx.doi.org/10.1016/0550-3213(78)90257-2
http://arXiv.org/abs/hep-th/0404255
http://arXiv.org/abs/1404.1299
http://dx.doi.org/10.1007/JHEP03(2014)017


[18] R. Baston and L. Mason, Classical Quantum Gravity 4, 815
(1987).

[19] Y. Geyer, A. E. Lipstein, and L. Mason (to be published).
[20] T. Adamo, J. High Energy Phys. 04 (2014) 080.
[21] A. Hodges, J. High Energy Phys. 07 (2013) 075.

[22] S. He, J. High Energy Phys. 10 (2013) 139.
[23] T. Adamo and L. Mason, Classical Quantum Gravity 29,

145010 (2012).
[24] T. Adamo and L. Mason, Classical Quantum Gravity 31,

045014 (2014).

PRL 113, 081602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

081602-5

http://dx.doi.org/10.1088/0264-9381/4/4/018
http://dx.doi.org/10.1088/0264-9381/4/4/018
http://dx.doi.org/10.1007/JHEP04(2014)080
http://dx.doi.org/10.1007/JHEP07(2013)075
http://dx.doi.org/10.1007/JHEP10(2013)139
http://dx.doi.org/10.1088/0264-9381/29/14/145010
http://dx.doi.org/10.1088/0264-9381/29/14/145010
http://dx.doi.org/10.1088/0264-9381/31/4/045014
http://dx.doi.org/10.1088/0264-9381/31/4/045014

