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Steane’s 7-qubit quantum error-correcting code admits a set of fault-tolerant gates that generate the
Clifford group, which in itself is not universal for quantum computation. The 15-qubit Reed-Muller code
also does not admit a universal fault-tolerant gate set but possesses fault-tolerant T and control-control-Z
gates. Combined with the Clifford group, either of these two gates generates a universal set. Here, we
combine these two features by demonstrating how to fault-tolerantly convert between these two codes,
providing a new method to realize universal fault-tolerant quantum computation. One interpretation of
our result is that both codes correspond to the same subsystem code in different gauges. Our scheme
extends to the entire family of quantum Reed-Muller codes.
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A prominent technique of fault-tolerant quantum com-
putation is the use of transversal gates [1]. In an architecture
where each logical qubit is encoded in a code block which
can protect against up to t errors, a gate is said to be
transversal if it does not couple qubits inside a given block.
As a consequence of transversality, the number of errors or
faults in a block cannot increase under the application of a
gate: the number of errors after the gate is at most the
number of initial errors in the data plus the number of faults
in the execution of the gate. Single-qubit errors can
propagate to single-qubit errors in other blocks, but these
will be corrected independently on each block. In this way,
an error-rate ϵ becomes cϵtþ1 after error correction, where c
is at most the number of different ways of getting tþ 1
faults in a single block. Recursing this procedure leads to
the celebrated accuracy threshold theorem [1–5].
Unfortunately, it is not possible to construct a quantum

code which admits a universal set of transversal gates [6], so
additional techniques are required. In many circumstances it
is possible to fault-tolerantly implement the Clifford group, a
finite subgroup of the unitary group which is not universal.
In particular, all codes of the Calderbank-Shor-Steane (CSS)
family have transversal controlled-not operations [7], and
code deformation can be used to implement the entire
Clifford group in topological codes [8]. Magic-state distil-
lation and injection [9] is the most common technique to
complete the universal gate set.
Recently, other techniques have been proposed to circum-

vent this no-go on transversal gates. Jochym-O’Connor and
Laflamme [10] used a “relaxed” notion of transversality
which only demands that gates do not transform a single
error or fault into an uncorrectable error, without prohibiting
that it couples qubits from the same block. The same idea
is responsible for the success of code deformation [8,11],
which changes the error-correcting code in such a way that a
full cycle returning to the original code implements a gate.
Because each step in the deformation acts on a number of

qubits which is less than the minimum distance of the
codes, the transformation is fault tolerant despite being
nontransversal [12]. Therefore, schemes for topological
quantum computation [13] are a form of code deformation.
Paetznick and Reichardt [14] (see also a related idea of
Knill, Laflamme, and Zurek [15]) proposed a scheme where
transversal gates take the system outside the code space, but
a subsequent round of error correction restores it. As we
discuss below, this is conceptually equivalent to Bombín’s
scheme [16] where transversal gates are applied to a
subsystem code [17,18], altering the gauge degrees of
freedom while applying a logical gate to the encoded data.
The gauge can be returned to a standard state before a new
gate is applied.
Here, we propose a scheme that converts between two

codes which, jointly, possess a universal set of transversal
gates. Clifford group transformations are realized in
Steane’s 7-qubit code [19], while the T ¼ Z1=4 gate
and/or the control-control-Z gate are realized using the
15-qubit Reed-Muller code [15]; either of these last two
gates is sufficient to complete the universal gate set, but
an over-complete set can reduce the compilation overhead
[20]. While it is always possible to convert between codes
by preparing a special ancillary entangled state to teleport
the data, our main contribution is a fault-tolerant scheme
which directly converts the information in place. Much like
in the approaches outlined above, the code is modified
during the computation. One important difference here is
that the codes involved have different numbers of qubits, an
aspect that should be taken into account when optimizing
resources to realize a given quantum circuit. Similarly to
the proposals of Refs. [14] and [16], our scheme can be
seen as a subsystem encoding [17,18] with different gauge
fixing. In fact, our approach should be seen as comple-
mentary to Refs. [14,16], which enables a much richer set
of transversal gates and extends to the entire quantum
Reed-Muller code family.
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The rest of this Letter is organized as follows: After a
brief review of classical and quantum codes, we present the
family of quantum Reed-Muller codes and highlight some
of their key properties. Then, we review transversal gate
constructions for these codes. We then explain the con-
version scheme, which essentially relies on a recursive
definition of the Reed-Muller codes. Lastly, we present
an alternative derivation in terms of subsystem codes,
and conclude by discussing possible applications of our
scheme.
Codes.—An n-bit classical linear code encoding k bits is

defined as the null space of a ðn − kÞ × n parity-check
matrix H (in Z2 arithmetic), i.e., C ¼ fx ∈ Zn

2∶Hx ¼ 0g.
Its minimum distance d is the minimum number of bit flips
required to map one code word to another. Given an
erroneous string x0 ¼ xþ e obtained from a code word x
and error e, the error syndrome is given by s ¼ Hx0 ¼ He
and can unambiguously identify any error acting on less
than or equal to ðd − 1Þ=2 bits. The code can also be
defined as the row space of a k × n generator matrix G, i.e.,
C ¼ rowðGÞ, which is the dual of H, i.e., HGT ¼ 0.
A stabilizer code encoding k qubits into n qubits is

specified by a set A of n-k independent stabilizer gen-
erators, which are commuting and Hermitian elements of
the n-qubit Pauli group (obtained from the n-fold tensor
product of the 2 × 2 identity I and the Pauli matrices X, Y,
and Z). The code space C is a subspace of the n-qubit
Hilbert space stabilized by A,

C ¼ fjψi ∈ ðC2Þ⊗n∶ Ajψi ¼ jψi ∀ A ∈ Ag: ð1Þ

Equivalently, it can be defined as the image of the code
projector PA ¼ Q

A∈AðI þ AÞ=2 ¼ ð1=2jAjÞPS∈SS, where
S is the stabilizer group generated byA. When a code state
jψi ∈ C undergoes a Pauli error E, error correction is
realized by measuring the stabilizer generators. The �1
measurement outcome of measuring Aj ∈ A indicates
whether Aj commutes or anticommutes with E:
AjðEjψiÞ ¼ �EAjjψi ¼ �ðEjψiÞ. Logical operators
transform the state but preserve the code space; i.e., they
are elements of NðSÞ − S, where N denotes the normalizer
of a group. A code has distance d if it takes an error of
weight d or more to map a code word to a distinct code
word. These parameters of a code are collectively denoted
(n, k, d) in the classical setting and [[n, k, d]] in the
quantum setting.
The Reed-Muller code.—The Reed-Muller codes of order

1 can be defined recursively [21]: the code RMð1; 1Þ has
generator matrix

G1 ¼
�
1 1

0 1

�
ð2Þ

and the code RMð1; mþ 1Þ has generator matrix

Gmþ1 ¼
�
Gm Gm

0 1

�
: ð3Þ

(and bold symbols 0 and 1 designate strings of 0 s and 1 s
of lengths fixed by the context). The dual of RMð1; mÞ is
RMðm − 2; mÞ and has generator matrix Hm. Quantum
codes are derived from shortened Reed-Muller codes
RMð1; mÞ, where the first row and column are deleted
from Gm. We can similarly define shortened dual codes
RMðm − 2; mÞ with generator matrix H̄m. Hence, the
generator matrices of RMð1; mÞ obey the recursive
definition

Ḡmþ1 ¼
�
Ḡm Ḡm 0T

0 1 1

�
ð4Þ

(we have permuted the columns for later convenience).
Note that RMðm − 2; mÞ is not the dual of RMð1; mÞ.
Using this definition, the following facts can easily be
verified (see Appendix A in the Supplemental Material
[22]) by induction for m ≥ 2.
1. For x ∈ RMð1; mÞ or RMð1; mÞ, jxj ¼ 0 mod 2m−1.
2. For m ≥ 3, RMð1; mÞ is contained in its dual,

i.e., ḠmḠT
m ¼ 0.

3. The minimum distance of the dual code to RMð1; mÞ
is 3.
4. RMð1; mÞ is contained in the dual of RMðm − 2; mÞ,

i.e., H̄mḠT
m ¼ 0.

5. RMð1; mÞ is contained in RMðm − 2; mÞ,
i.e., rowðḠmÞ ⊂ rowðH̄mÞ.
6. For x1, x2;…; xp ∈ RMð1; mÞ, x1 · x2 ·…xp ¼ 0

mod 2m−p.
The quantum Reed-Muller codes [23] QRMðmÞ derived

from RMð1; mÞ codes are CSS codes, meaning that their
stabilizer generators break into two sets Ax

m and Az
m

[24,25]. Elements of Ax
m are obtained from rows of Ḡm,

by substituting 1 s by X’s and 0 s for I’s. Elements of Az
m

are obtained in a similar way, but from the generator matrix
of the shortened dual code RMðm − 2; mÞ.
In a CSS code, Ax detects z-type errors and Az detects

x-type errors. It follows from fact 3 that QRMðmÞ have
minimum distance d ¼ 3, so the parameters of the code are
[[n ¼ 2m − 1, k ¼ 1, d ¼ 3]]. The logical operators are
given by the rows that were removed in the shortening
procedure, they are X̄m ¼ X⊗n and Z̄m ¼ Z⊗n. Finally,
note that the commutation of the stabilizer generators
follows from the orthogonality of RMð1; mÞ and
RMðm − 2; mÞ (fact 4).
Transversal gates.—The logical 0 state of a code should

be a simultaneousþ1 eigenstate of Z̄ and all elements ofA.
The state j0i is already a þ1 eigenstate of Z̄ and of all Az

m,
so we obtain the logical 0 by projecting it onto the þ1
eigenspace of elements of Ax

m,
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j0̄iS ¼
Y
A∈Ax

m

I þ A
2

j0i ð5Þ

¼ 1

jSxj
X
S∈Sx

m

Sj0i ð6Þ

¼ 1

jSxj
X

x∈rowðḠmÞ
jxi: ð7Þ

The logical 1 is obtained by applying X̄m to this state, so it
is j1̄i ¼ 1=jSxj

P
x∈rowðḠmÞjx⊕1i. It follows from fact 1 that

j0̄i is the superposition of strings of weight 0mod 2m−1 and
j1̄i is the superposition of strings of weight −1mod 2m−1.
Consider now the single-qubit gate ZðωlÞ ¼ diagð1;ωlÞ

where ωl is the lth root of unity. Observe that for any n-bit
string x, ZðωlÞ⊗njxi ¼ ωjxj

l jxi ¼ ωðjxjmodlÞ
l jxi. From the

above consideration on the weights of the basis states
appearing in the logical states j0̄i and j1̄i, it follows that for
l ¼ 2m−1, the transversal gate ZðωlÞ⊗n acts as the logical
ZðωlÞ† on QRMðmÞ [26–28].
The codes QRMðmÞ also have a transversal k-fold

controlled-Z gate for k ≤ m − 2. Note that the transversal
k-fold controlled gate acts on a basis state jx1ijx2i…jxkþ1i
by introduction of a phase factor ð−1Þx1·x2·…xkþ1. A logical
state jȳi is the superposition of states of the form jxþ y1i
where x ∈ RMð1; mÞ. When acted on by a transversal k-
fold controlled-Z gate, a logical state jȳ1ijȳ2i…jȳkþ1i will
pick up a phase factor ðx1 þ y11Þ · ðx2 þ y21Þ ·…ðxkþ1 þ
ykþ11Þ where xj ∈ RMð1; mÞ for all j. Expanding this
product, all terms containing x’s produce a trivial phase due
to fact 6, so only the term y1y2…ykþ1 contributes to the
phase, which produces the desired transformation.
The 7-qubit Steane code is derived from the classical

code RMð1; 3Þ, also known as the classical (7,4,3)
Hamming code. This is a special case as it is self-dual,
which implies that Ax

3 and Az
3 are equal up to exchanging

X’s for Z’s. As a consequence it has transversal Clifford
gates. The Hadamard gate H exchanges X and Z. It is thus
clear that the transversal gateH⊗7 preserves the code space
(as it only swaps Ax

3 with Az
3) and acts as the logical

Hadamard by exchanging X̄ with Z̄. The CNOT operation
acting on two qubits maps the operators (IX, XI, IZ, ZI) to
(IX, XX, ZZ, ZI). The transversal gate CNOT⊗7 therefore
acts on the logical operators as a logical CNOT operation,
and maps the set of generators fIAx

3;A
x
3I; IA

z
3;A

z
3Ig of

S3 ⊗ S3 to fIAx
3;A

x
3A

x
3;A

z
3A

z
3;A

z
3Ig, which is simply a

different set of generators for S3 ⊗ S3, so the code is
preserved. Finally, the phase gate P corresponds to Zðω4Þ
defined above and is transversal as we have seen.
Conversion.—The key feature of quantum Reed-Muller

codes which enables our construction, and which follows
from fact 5 RMð1; mÞ ⊂ RMðm − 2; mÞ, is that Az

m con-
tains the same operators as Ax

m with X’s replaced by Z’s,

plus some additional operators. In other words, if we
consider the checks A0z

m obtained by replacing X by Z in
Ax

m, then Az
m ¼ A0z

m∪ ~Az
m for some set of z-stabilizer

generators ~Az
m. Since elements of Ax

m can unambiguously
discriminate all single-qubit z errors, it follows that A0z

m
can unambiguously discriminate all single-qubit x errors;
i.e., operators from ~Az

m are superfluous. Starting from the
“relevant” stabilizers Ax

m and A0z
m, there are many ways to

complete the list of stabilizers in order to obtain a valid
error-correcting code. Our scheme will make use of this
freedom to convert between different codes.
It follows from Eq. (4) that the relevant stabilizers Ax

m
and A0z

m can be defined recursively. Given two ordered sets
A ¼ fA1; A2;…g and B ¼ fB1; B2;…g, we introduce the
notation A × B ¼ fA1 ⊗ B1; A2 ⊗ B2;…g, and write

Ax
mþ1 ¼

�
Ax

m × Ax
m ⊗ I;

I⊗n ⊗ X̄m ⊗ X

�
and ð8Þ

A0z
mþ1 ¼

�
A0z

m × A0z
m ⊗ I;

I⊗n ⊗ Z̄m ⊗ Z

�
: ð9Þ

Let us first explain how to convert from QRMðmÞ to
QRMðmþ 1Þ. We begin with some information encoded
in a ð2m − 1Þ-qubit state of QRMðmÞ, jψ̄im. We prepare a
2m-qubit quantum state jΦi ¼ 1=

ffiffiffi
2

p ðj0̄imj0i þ j1̄imj1iÞ
consisting of a maximally entangled state between a bare
qubit and a qubit encoded in RMðmÞ. Viewing the joint
state jψ̄im ⊗ jΦi as an encoded state of a ð2mþ1 − 1Þ-qubit
code, we can write the generators for this “extended
quantum Reed-Muller code” as

Az
m ⊗ I⊗n ⊗ I;

Ax
m ⊗ I⊗n ⊗ I;

I⊗n ⊗ Az
m ⊗ I;

I⊗n ⊗ Ax
m ⊗ I;

I⊗n ⊗ Z̄m ⊗ Z;

I⊗n ⊗ X̄m ⊗ X: ð10Þ

We can change the generating set without changing the
code and instead use

A0z
m ×A0z

m ⊗ I;

Ax
m ×Ax

m ⊗ I;

I⊗n ⊗ Z̄m ⊗ Z;

I⊗n ⊗ X̄m ⊗ X;

~Az
m × ~Az

m ⊗ I;

Az
m ⊗ I⊗n ⊗ I;

Ax
m ⊗ I⊗n ⊗ I: ð11Þ
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We immediately recognize the first 2mþ 2 generators of
this list [first four rows of Eq. (11)] as generating the
relevant stabilizers of QRMðmþ 1Þ, i.e., Ax

mþ1 and A0z
mþ1.

Indeed, compare to Eqs. (8), (9). Thus, only operators from
the last three lines of Eq. (11) differ, and must be

substituted by ~Az
mþ1 to convert into QRMðmþ 1Þ. In fact,

only the m stabilizers of the last line are a problem, since
~Az
m × ~Az

m ⊗ I and Az
m ⊗ I⊗n ⊗ I ⊂ ~Az

mþ1.
But as explained in the previous paragraphs, these m

stabilizers are superfluous in the sense that they are not
required to diagnose single-qubit errors. Thus, if we fault-
tolerantly measure all stabilizers of QRMðmþ 1Þ on the
state jψ̄im ⊗ jΦi, we can use the syndrome from the first
six rows of Eq. (11) to diagnose errors, and remove any
syndrome associated to the last m stabilizers by a fault-
tolerant error-correction procedure (or by adapting the
Pauli frame). Specifically, given a set of stabilizer gen-
erators A ¼ fA1;…; An−kg and logical operators
L ¼ fX̄a;…;̄ Xk; Z̄1;…; X̄kg, there exists a set of “pure
errors” T ¼ fT1;…; Tn−kg such that Tj commutes with all
elements of L, T , and A except Aj with which it
anticommutes. A syndrome Aj ¼ −1 revealed by one of
the last m stabilizers j ¼ n − k −m;…; n − k is corrected
by applying Tj.
To summarize, to convert from QRMðmÞ to

QRMðmþ 1Þ, we first fault-tolerantly prepare the 2m-qubit
stabilizer state jΦi, append it to the system, fault-tolerantly
measure the stabilizer generators of QRMðmþ 1Þ, error-
correct given the first 2mþ1 −m − 2 syndrome bits [first six
rows of Eq. (11)], and restore the last m syndrome bits
using their associated pure errors.
To convert from QRMðmþ 1Þ to QRMðmÞ, we simply

fault-tolerantly measure the stabilizers of Eq. (11), use the
first 2mþ1 −m − 2 syndrome bits [first six rows of Eq. (11)]
to diagnose errors, and restore the last m syndrome bits
using the associated pure errors. We can then remove the
additional 2m qubits and be left with the (2m − 1)-qubit
state jψ̄im encoded in QRMðmÞ.
Subsystem code interpretation.—It is possible to recast

the above conversion scheme using the subsystem code
formalism [17,18], which highlights its similarity with
the Paetznick and Reichardt [14] and the Bombín [16]
schemes. We can define a stabilizer code from the stabi-
lizers that are common to QRMðmþ 1Þ and the extended
QRMðmÞ. There are 2mþ1 −m − 2 of these and they are
given by the first six lines of Eq. (11). Thus, this code
encodes k ¼ mþ 1 logical qubits and has minimum dis-
tance d ¼ 3, so it can error correct any single-qubit error.
One of these logical qubits, which we label 0, is the one

encoded in the original code and has logical operators
X̄0 ¼ X̄m and Z̄0 ¼ Z̄m. The other logical operators asso-
ciated with “gauge qubits” X̄j with j ¼ 1;…; m correspond
to elements of the last line of Eq. (11). Their conjugate
partners Z̄j are generated by elements of ~Az

mþ1.

We obtain a subsystem code by choosing to encode
information only in the first logical qubit of the code. The
other logical qubits j ¼ 1; 2;…; m carry no information,
and can be fixed to an arbitrary state. The conversion
scheme described above then simply consists in fixing
these m gauge qubits all in state j0̄i or all in state
1=

ffiffiffi
2

p ðj0̄i þ j1̄iÞ. The first scenario can be realized by
measuring the operators Z̄j, and flipping the qubit using X̄j

if the outcome is −1. This procedure brings the state to the
extended quantum Reed-Muller code, and the last 2m qubits
can be discarded to obtain a state encoded inQRMðmÞ. The
second scenario can be realized by measuring the operators
X̄j, and flipping the qubit using Z̄j if the outcome is −1.
This procedure brings the state to QRMðmþ 1Þ.
Thus, we see that the different quantum Reed-Muller

codes all correspond to the same subsystem code with
different gauge fixing. Depending on the chosen gauge,
some qubits become unentangled with the part of the code
supporting the data, and can be discarded. At the bottom of
this hierarchy is Steane’s 7-qubit code, which realizes the
entire Clifford group transversally. Above is an infinite
family of quantum Reed-Muller codes which admit increas-
ingly complex transversal gates [29].
Conclusion and outlook.—We have presented a scheme

to directly and fault-tolerantly convert between a family of
quantum error-correcting codes. By combining the trans-
versal gate sets of these codes, we obtain a (overcomplete)
universal gate set. Our result offers a deeper understanding
of a recent proposal [14] and complements it in many ways.
An important advantage of our conversion scheme is

its potential reduction of overhead. We can envision an
architecture where special areas in the computer are
dedicated to the execution of non-Clifford gates. In those
areas, the encoding uses concatenated Reed-Muller codes,
while the rest of the computer is encoded with concatenated
Steane codes, an important overhead reduction over
Ref. [14] when few non-Cliford gates are executed in
parallel. Qubits are brought into these special areas to
realize non-Clifford gates.
Finally, we note that the higher-order Reed-Muller codes

RMðr;mÞ obey a similar recursive definition

Gr;mþ1 ¼
�
Gr;m Gr;m

0 Gr−1;m

�
ð12Þ

and are dual-containing when their rates are more than 1=2
[21], so our conversion procedure can be extended to this
broader class of codes (see Appendix B in the Supplemental
Material [22]). The two main motivations to study these
codes is that they can have a larger minimal distance and
admit a richer set of transversal gates [28]. Moreover, the
Reed-Muller code family can be used to distill magic states
[14,26–28]. Distillation is a procedure which uses Clifford
operations to increase the fidelity of nonstabilizer states,
which can be injected into the computation to realize
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non-Clifford transformations [9]. Higher-order Reed-Muller
codes of minimal distance greater than 3 could be used to
improve magic state distillation protocols.
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