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Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security
of quantum information protocols independently of imperfections in the measuring devices. Here, we
present a similar procedure for witnessing entangled measurements, which play a central role in many
quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized
quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify
an entangled measurement using only measurement statistics. We also apply our techniques to certify
unentangled but nevertheless inherently quantum measurements.
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Introduction.—Entanglement is nowadays viewed as the
paradigmatic feature of quantum theory. Entanglement
underpins quantum information science, where it represents
a powerful resource for information processing, secure
communication, and precision measurement. In recent
decades, entanglement has been demonstrated and care-
fully characterized in a wide range of physical platforms,
with the strongest demonstrations employing Bell
inequalities [1,2], where violation of the inequality
implies that the underlying quantum state is entangled.
Importantly, this verdict is device independent, in the sense
that it does not rely on any assumption about the alignment
of the measurement devices or of the Hilbert space
dimension of the state. Device-independent entanglement
verification is therefore of great practical importance, for
example, in systems where it is difficult to guarantee
the precise configuration of measuring devices, due, for
instance, to unnoticed side channels. Moreover, the
device-independent approach ensures security in
realistic implementations of adversarial tasks, such as
cryptography [3,4].
Quantum mechanics also allows for entangled measure-

ments, a concept which complements the preparation
of entangled states (Fig. 1). Specifically, an entangled
measurement is described by an operator for which
at least one of the eigenstates corresponds to an entangled
state. Entangled measurements have been studied much
less than entangled states; however, such measurements
play a fundamental role in many manifestations of quantum
information science, including quantum teleportation [5],
dense coding [6], parameter estimation [7], quantum
repeaters [8], and quantum computation [9]. Hence, the
verification and characterization of entangledmeasurements
constitute a critically important task.

One standard approach for measurement characterization
is quantum detector tomography—essentially, the analogue
of quantum state tomography but for a measurement
process [10–12]. These approaches are restricted in gen-
erality because they require access to a well-calibrated
source of quantum states spanning the state space, a feat
that is not consistently enforceable. It is therefore important
to ask whether this stringent state-preparation requirement

(a)

(b)

FIG. 1 (color online). Conceptual representation of (a) a Bell
inequality test, in which product measurements are performed on
an entangled state, and (b) our scenario, in which product states
are measured jointly and projected onto an entangled state. In (a),
the entanglement of the shared state jΨi can be certified from the
observed data, i.e., the probability distribution pða; bjx; yÞ
(where x and y denote measurement settings, and a and b the
corresponding outcomes), via Bell inequality violation. In (b),
the presence of an entangled measurement can be certified from
the data pðcjx; y; zÞ using our witness for entangled measure-
ments. Here, we require the assumptions that the sources produce
qubit states, and that they are uncorrelated: ρ ¼ ρAx ⊗ ρBy .
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can be dispensed with. Fundamentally, it is also valuable to
know whether or not a measurement can be certified as
entangled based solely on measurement statistics, in the
same way that quantum states can be. In a recent theoretical
work, Vértesi and Navascués [13] showed that such
verification is indeed possible, under the assumption
that the prepared states used to test the measuring
device are of fixed Hilbert space dimension (but other-
wise uncharacterized). This approach, termed semi-device-
independent, has been followed for other tasks, such as the
quantification of entanglement [14], cryptography proto-
cols [15], and randomness certification [16]. Related works
expound certification of the presence of an entangled
measurement in a fully device-independent scenario
[17] (see also Ref. [18]); however, these approaches
are of limited experimental interest, as they are not robust
to noise and/or involve experimentally unfeasible
measurements.
Here, we demonstrate how entangled measurements

can be certified experimentally in the semi-device-
independent framework. We present theoretically a
simple and robust test of entangled measurements and
show that a partial linear optics Bell-state measurement
device [19] conveniently produces the optimal quantum
violation. We implement this optimal strategy in a
photonic experiment and demonstrate violation of our
witness. Hence, based only on the experimental data
(and an assumption on the Hilbert space dimension of
the prepared systems), we can certify that the measure-
ment is entangled. We also explore the possibility of
discriminating between quantum unentangled measure-
ments and purely classical measurements. We construct
a simple witness for this problem as well, and implement
it experimentally. Our work shows that semi-device-
independent techniques are useful in experimental
quantum information tasks and thus complement recent
experiments on device-independent estimation of quan-
tum system preparations [20–22].
Scenario.—We consider three separated parties Alice,

Bob, and Charlie. Alice and Bob each hold a preparation
device, which we suppose emits uncharacterized qubit
states. Each party can choose between n possible prepa-
rations, labeled x ¼ 0;…; n − 1 and y ¼ 0;…; n − 1,
respectively. The corresponding qubit states are denoted
by ρAx and ρBy . Since Alice and Bob are separate and
independent, the joint state that they prepare is unen-
tangled. The states prepared by Alice and Bob are then
transmitted to Charlie, who holds an uncharacterized
measurement device. Upon receiving both input states,
Charlie chooses a measurement setting z, and the device
provides a measurement outcome c. Our scenario can thus
be viewed as the dual (or time-reversed) version of a
standard Bell test (see Fig. 1).
Let us denote by fMcjzg the elements of Charlie’s

positive operator valued measurement (POVM). After

repeating this protocol many times, the parties obtain the
probability distribution of each outcome c given any
possible pair of preparations x; y and measurement z, i.e.,

pðcjx; y; zÞ ¼ TrðρAx ⊗ ρBy ·McjzÞ: ð1Þ
This represents the experimental data. Our goal is to
identify the type of measurement performed in Charlie’s
device, based only on the data. The key point is to
distinguish between different classes of measurements.
Classical measurements: Alice and Bob’s devices each

send one (classical) bit of information, denoted by bA and
bB, to Charlie’s device, which outputs according to an
arbitrary function c ¼ fðbA; bB; zÞ.
Local operations and classical communication measure-

ments (LOCC): The measurement corresponds to a
sequence of local measurements on Alice and Bob’s
individual qubits, such that each measurement possibly
depends on the outcomes of earlier measurements.
Unentangled measurements: Each of the POVM ele-

ments Mcjz is a separable operator (for all c and z).
Entangled measurements: At least one of the POVM

elements Mcjz is not separable.
Note that we have the following inclusion relations:

general measurements ⊃ unentangled measurements ⊃
LOCC measurements ⊃ classical measurements, where
“general measurements” refers to the set of all quantum
measurements, including entangled and unentangled ones.
Robust test for entangled measurements.—We present a

simple test for certifying the presence of an entangled
measurement. Consider a party (Charlie) who inherits a
measurement box that takes two qubits as inputs and
correspondingly yields one of three classical outputs.
Charlie inquires into the claim that the measurement
performed by the device is an entangled quantum meas-
urement. A procedure for witnessing entangled measure-
ment is to allow n ¼ 3 preparations for each of the two
qubits, tasks which will be assigned to Alice and Bob,
respectively. Charlie’s device performs a fixed (single-
setting) ternary measurement with outcome c ¼ 1; 2; 3
(hence, the index z is omitted). We consider the linear
witness

w ¼
X
c¼1;2

X2
x;y¼0

Wcjx;ypcjx;y; ð2Þ

where the coefficients are given by

W1jx;y ¼

0
B@

1 −1 −1
−1 1 −1
−1 −1 1

1
CA;

W2jx;y ¼

0
B@

1 −1 −1
−1 −1 1

−1 1 −1

1
CA: ð3Þ
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Next, we derive the maximal value for our witness (2) for
the different classes of measurements discussed above.
Since our witness is linear, it follows that the maximal value
for a classical measurement strategy can be obtained for a
deterministic strategy. As there is only a finite number of
such strategies, we exhaustively evaluate them and find that
w ≤ wclassical ¼ 1. This bound can be obtained by consid-
ering the following strategy: Alice (Bob) sends bA ¼ 1
(bB ¼ 1) iff x ¼ 0 (y ¼ 0), and Charlie outputs c ¼ 1 upon
receiving bA ¼ bB ¼ 1 and c ¼ 3 otherwise.
For unentangled measurements, we find that

w ≤ wunent ¼ 1. This represents our witness for detecting
entangled measurements: measurement statistics producing
w > 1 cannot be obtained from any strategy using unen-
tangled measurements. Note that the bound wunent ¼ 1 was
obtained via numerical methods (seesaw iteration [23]);
however, the modest complexity of the problem and
the large number of iterations provide very strong
evidence of optimality. From the inclusion relations
mentioned above, we also get that wLOCC ≤ 1 because
wgeneral ≥ went ≥ wunent ≥ wLOCC ≥ wclassical.
Next, we observe that entangled measurement can out-

perform unentangled measurements, in the sense of giving
a larger value of w. Consider Alice and Bob’s preparations
to be the pure qubit states represented by Bloch vectors
~rx ¼ ðcos αx; 0; sin αxÞ and ~qy ¼ ðcos βy; 0; sin βyÞ, where
ρAx ¼ ð1þ ~rx · ~σÞ=2 and ρBy ¼ ð1þ ~qy · ~σÞ=2, and ~σ ¼
ðσx; σy; σzÞ is the vector of Pauli matrices. For Charlie’s
device, we consider the POVM elements

M1¼jϕþihϕþj; M2¼jϕ−ihϕ−j; M3¼1−M1−M2;

ð4Þ

where jϕ�i ¼ ðj00i � j11iÞ= ffiffiffi
2

p
. This POVM represents

the so-called partial Bell-state measurement, a routinely
used and deterministically implementable measurement in
linear optics [24]. Overall, we obtain

pðcjx; yÞ ¼ TrðρAx ⊗ ρBy ·McÞ

¼ 1

4
f1þ cos½αx þ ð−1Þcβy�g ð5Þ

for c ¼ 1; 2 (the c ¼ 3 condition is found by normalization
but plays no role in the witness). Setting αj ¼ βj ¼ 2πj=3
for j ¼ 0; 1; 2, we obtain w ¼ 3=2, hence largely exceeding
the bound for unentangled measurements. In fact, we
verified using numerical methods (seesaw) that the above
strategy is optimal, i.e., went ¼ 3=2, representing the
maximal possible value allowed by quantum mechanics
(considering qubit preparations).
Robust test of unentangled versus classical

measurements.—We now address the question of discrimi-
nating unentangled quantum measurements from classical
measurements, again for the case of n ¼ 3 preparations.
However, Charlie now chooses between two dichotomic

measurements z ¼ 0; 1, with outcome c ¼ 1; 2. We con-
sider the linear witness

v ¼
X
z¼0;1

X2
x;y¼0

Vc¼1jx;y;zpc¼1jx;y;z: ð6Þ

For simplicity, we omit the notation c ¼ 1 and just write
Vx;y;z and px;y;z. The coefficients of the witness are given by

Vx;y;z¼0 ¼
 
2 0 0

0 −2 −2
0 −2 −2

!
;

Vx;y;z¼1 ¼
 
0 0 0

0 1 −1
0 −1 1

!
:

ð7Þ

As above, the maximal value for a classical measurement
can be obtained by checking all deterministic strategies.
We find vclass ≤ 2, which is our witness for detecting
unentangled but nonclassical measurements. Note that
the bound vclass ¼ 2 can be obtained by considering the
following strategy: Alice (Bob) sends bA ¼ 1 (bB ¼ 1) iff
x ¼ 0 (y ¼ 0), and Charlie outputs c ¼ 1 upon receiving
bA ¼ bB ¼ 1 and c ¼ 2 otherwise.
The following strategy demonstrates that unentangled

measurements can outperform classical measurements.
Consider as above Alice and Bob preparing qubit states
in the x; z plane of the Bloch sphere, given by the angles
αj ¼ βj ¼ 2πj=3 for j ¼ 0; 1; 2. Charlie’s POVM elements
(for outcome c ¼ 1) are given by

M1jz¼0 ¼ j0ih0j ⊗ j0ih0j;
M1jz¼1 ¼ jþihþj ⊗ jþihþj þ j−ih−j ⊗ j−ih−j; ð8Þ

where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
. Overall, we obtain v ¼ 3,

which clearly outperforms classical measurements.
Experimental verification of entangled measurements.—

The tests presented aim to reveal the nature of an unknown
measurement based solely on the measurement statistics of
a device. We experimentally certify entangled measure-
ments, as well as unentangled (but nevertheless genuinely
quantum) measurements via our witnesses, using photonic
polarization qubits, linear quantum optics, and single-
photon counting modules.
The entangled measurement was realized via a partial

Bell-state measurement (BSM) device based on a beam
splitter and polarization analysis [24]. Depending on
photodetector “click” patterns, this device determines
projections onto the singlet state jΨ−i ¼ ðjHVi−
jVHiÞ= ffiffiffi

2
p

, the triplet state jΨþi ¼ ðjHVi þ jVHiÞ= ffiffiffi
2

p
,

or the remaining triplet subspace spanned by
fjΦ�ig ¼ fðjHHi � jVViÞ= ffiffiffi

2
p g, where H and V denote

horizontal and vertical polarizations. This is equivalent to
the POVM elements M1;2;3 of Eq. (4). The standard mode
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of operation for the BSM sees the device combine pairs of
identical photons (meaning degenerate in every degree of
freedom, except polarization, where information is
encoded) on a 50∶50 beam splitter. The photons undergo
nonclassical Hong-Ou-Mandel (HOM) interference [25],
succeeded by polarization analysis and two-photon
pseudo-number-resolving detection (pseudo-number reso-
lution is achieved using 50∶50 fiber beam splitters and
single-photon counting modules at the output couplers;
see Fig. 2).
This same device was used to enact quantum unen-

tangled measurements by making conditions for nonclass-
ical two-photon interference unfavorable. We achieved
this by delaying the relative arrival time between the
photon pairs incident on the 50∶50 beam splitter, enforcing
temporal distinguishability. To test the action of Charlie’s
measurement (which, in principle, is unknown), Alice and
Bob sent pairs of initially separable photons into Charlie’s
measurement device. To create separable input states, Alice
and Bob individually employed type-I spontaneous para-
metric down-conversion sources (using BiBO crystals) to
generate polarization-unentangled pairs of single photons.

Because Alice and Bob’s photons were generated in
independent down-conversion sources, their polarization
encoded qubits were also unentangled in all other degrees
of freedom, justifying the restricted dimensionality
assumption of this semi-device-independent technique
[27] (more information on the photon source is provided
in the Supplemental Material [28]). The remaining photons
from each of Alice and Bob’s pairs acted as heralding
signals for the entanglement verification protocol. Before
being received by Charlie, Alice and Bob’s photons were
polarization encoded (using motorized half-wave plates) in
each of the n ¼ 3 preparations in the x; z plane of the Bloch
sphere, creating states ρAx and ρBy .
We first investigated the case of an entangled measure-

ment, when Charlie’s device performs a partial BSM. The
observed statistics resulted in wexp ¼ 1.32� 0.07, violat-
ing the bound for unentangled measurements (wunent ¼ 1)
by more than 4 standard deviations (see Table I). Hence,
from the statistics of the experiment only, we can guarantee
that Charlie’s device performs an entangled measurement.
Note that we did not reach the maximal possible violation
of the witness, i.e., went ¼ 3=2, primarily due to imperfect
HOM visibility. Theoretical simulations using our imper-
fect HOM visibility (≈90%), measured independently,
lowered the expected value of the witness to w ∼ 1.37,
consistent with our experimental observations.
Next, we moved to the case of an unentangled meas-

urement, where Charlie’s device performs the two possible
dichotomic measurements given in Eq. (8). From the
statistics of the experiment, we evaluated our second
witness [see Eq. (6)] and obtained vexp ¼ 2.75� 0.06,
hence violating the bound for purely classical measure-
ments (vclass ¼ 2) by more than 12 standard deviations. As
above, imperfect HOM visibility accounts for the reduced
violation of the witness (theoretically, we had vunent ¼ 3).
The experimental data processing was subjected to

standard assumptions for an estimation scenario. First,
we assumed that the observers were free to choose the
preparations and measurements. Next, we assumed inde-
pendent trials; that is, in each run of the experiment, the
statistics are described by Eq. (1). Finally, we assumed the
observed statistics represented a fair sample of the total
statistics, which would be obtained with detectors having
unit efficiency.FIG. 2 (color online). Experimental apparatus. A pair of

separate spontaneous parametric down-conversion (SPDC)
sources creates Alice and Bob’s photon pairs. One photon from
each pair of Alice and Bob’s sources acts as a heralding signal,
with the remaining photons sent via optical fiber (solid lines) to
the inputs of Charlie’s partial BSM device. The type of meas-
urement that Charlie enacts is changed with the translation stage.
Dashed lines represent outputs from a 50∶50 fiber beam splitter.
The time variable phase shifter is a glass plate on a rotation stage
connected to an online quantum random number generator
(QRNG) [26], its purpose being to erase coherence between
the pump beam shared by Alice and Bob, enforcing source
independence and separability.

TABLE I. Inequality violations for quantum entangled and
quantum unentangled measurements. For the former, 1 < wexp <
1.5 implies entanglement. For the latter, 2 < vexp < 3 implies
nonclassical measurement. Uncertainties in wexp and vexp are
derived from single-photon counting statistics.

Measurement witnessed Bound Experiment Upper limit

Entangled w¼ 1 wexp¼1.32�0.07 w¼1.5
Unentangled quantum v¼2 vexp¼2.75�0.06 v¼ 3
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Conclusion.—Entangled measurements and quantum
operations are ubiquitous to many modern quantum infor-
mation protocols. The distribution of entanglement in a
quantum network through entanglement swapping, and
many other applied and fundamental quantum tests, require
the certification and characterization of entangled mea-
surements. Using the semi-device-independent approach,
we have presented and experimentally implemented a
simple and efficient witness for verifying the presence of
(i) entangled measurements and (ii) unentangled but
nevertheless inherently quantum measurements. As our
tests are based only on measurement statistics, they provide
a very practical and powerful tool for the estimation of
quantum systems and should find application in many
quantum information protocols. Our theoretical methods
can be directly adapted to arbitrary dimensional systems
with multiple parties and additional measurement out-
comes. Our technique can also, in principle, be used to
certify an unknown process as entangling (such as a
controlled-NOT gate), since such processes can implement
an entangled measurement [29].
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