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While it is well known that three dimensional quantum many-body systems can support nontrivial
braiding statistics between particlelike and looplike excitations, or between two looplike excitations, we
argue that a more fundamental quantity is the statistical phase associated with braiding one loop α around
another loop β, while both are linked to a third loop γ. We study this three-loop braiding in the context of
ðZNÞK gauge theories which are obtained by gauging a gapped, short-range entangled lattice boson model
with ðZNÞK symmetry. We find that different short-range entangled bosonic states with the same ðZNÞK
symmetry (i.e., different symmetry-protected topological phases) can be distinguished by their three-loop
braiding statistics.
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Introduction.—A powerful way to characterize the topo-
logical properties of two dimensional gapped quantum
many-body systems is to examine their quasiparticle braid-
ing statistics [1]. Thus, it is natural to wonder: what is the
analogous quantity that characterizes three dimensional
(3D) systems? The simplest candidate—3D quasiparticle
statistics—is of limited use since 3D systems can only
support bosonic and fermionic quasiparticles. On the other
hand, 3D systems can support much richer braiding statistics
between particlelike excitations and looplike excitations
[2–4] or between two looplike excitations [5–7]. Thus,
one might guess that particle-loop and loop-loop braiding
statistics are the natural generalizations of quasiparticle
statistics to three dimensions.
In this Letter, we argue that this guess is incorrect:

particle-loop and loop-loop braiding statistics do not fully
capture the topological structure of 3Dmany-body systems.
Instead, more complete information can be obtained by
considering a three-loop braiding process in which a loop α
is braided around another loop β, while both are linked with
a third loop γ (Fig. 1). We believe that three-loop braiding
statistics is one of the basic pieces of topological data that
describe 3D gapped many-body systems, and much of this
Letter is devoted to understanding the general properties of
this quantity. Also, as an application, we show that three-
loop statistics can be used to distinguish different short-
range entangled many-body states with the same (unitary)
symmetry—i.e., different symmetry-protected topological
(SPT) phases [8–10]. The latter result shows that the
braiding statistics approach to SPT phases, outlined in
Ref. [11], can be extended to three dimensions.
Discrete gauge theories.—For concreteness, we focus

our analysis on a simple 3D system with looplike excita-
tions, namely lattice ðZNÞK gauge theory [12]. More
specifically, we consider a 3D lattice boson model built
out of K different species of bosons, where the number of
bosons in each species is conserved modulo N so that the

system has a ðZNÞK symmetry. We suppose that the ground
state of the boson model is gapped and short-range
entangled—that is, it can be transformed into a product
state by a local unitary transformation [13]. We then
imagine coupling such a lattice boson model to a ðZNÞK
lattice gauge field [14].
In general, these gauge theories contain two types of

excitations: pointlike “charge” excitations which carry
gauge charge, and stringlike “vortex loop” excitations
which carry gauge flux. The most general charge excita-
tions can carry gauge charge q ¼ ðq1;…; qKÞ where each
component qm is an integer defined modulo N. The most
general vortex loop can carry gauge flux ϕ ¼ ðϕ1;…;ϕKÞ
where ϕm is a multiple of 2π=N. In fact, since we can
always attach a charge to a vortex loop to obtain another
vortex loop, a general vortex loop excitation carries both
flux and charge.
Let us try to understand the braiding statistics of these

excitations. In general, there are three types of braiding
processes we can consider: processes involving two
charges, processes involving a charge and a loop, and
processes involving multiple loops. Clearly, the first type of
process cannot give any statistical phase since the charges
are excitations of the short-range entangled boson model
and, therefore, must be bosons. On the other hand, the

FIG. 1. (a) Three-loop braiding process. The gray curves show
the paths of two points on the moving loop α. (b) A top view of
the braiding process within the plane that γ lies in. (c) A torus Ωα

is swept out by α during the braiding. Loop β (dashed circle) is
enclosed by Ωα.
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second kind of process, involving charges and loops, can
give a nontrivial phase. More specifically, if we braid a
charge q ¼ ðq1;…; qKÞ around a vortex loop with gauge
flux ϕ ¼ ðϕ1;…;ϕKÞ, the resulting statistical phase is
given by the Aharonov-Bohm formula

θ ¼ q · ϕ; ð1Þ

where “·” denotes the vector dot product.
All that remains is to examine the braiding statistics of

loops. The simplest process one can consider [15] involves
braiding a loop α around another loop β as shown in
Fig. 2(a). To analyze this process, we use two facts about
unlinked vortex loops: First, a subset of vortex loops, which
we call “neutral” loops, can be shrunk to a point and
annihilated by local gauge invariant operators. Second, all
other vortex loops can be obtained from neutral loops by
attaching an appropriate amount of charge. With these facts
in mind, let us first suppose that both α; β are neutral. In this
case, it follows from general principles that the statistical
phase θαβ ¼ 0, since we can “smoothly” [16] deform the
two-loop braiding process into another process in which α is
braided around the vacuum [Fig. 2(b)]. Now, consider the
general case where α; β carry charge. In this case, α; β can be
thought of as neutral loops with some attached charge. It
then follows from the Aharonov-Bohm formula (1) that the
Berry phase associated with braiding α around β is

θαβ ¼ qα · ϕβ þ qβ · ϕα; ð2Þ

where qα; qβ and ϕα;ϕβ denote the charge and flux carried
by α; β, respectively. To see this, note that during the two-
loop braiding, the charge qα is braided around the flux ϕβ,
and the flux ϕα is braided around the charge qβ.
While the above calculations show that 3D gauge

theories can exhibit nonvanishing braiding statistics, we
can see that these statistical phases are the same for all
gauge theories with gauge group ðZNÞK , independent of the
properties of the bosonic matter. Yet, we expect that the
bosonic matter should be important: if two lattice boson
models realize different short-range entangled phases with
the same symmetry (i.e., different SPT phases [8]), then,
presumably, the corresponding gauge theories belong to
distinct phases as well, by analogy with the 2D case
[11,17]. Clearly, if we want to distinguish these different

types of 3D gauge theories, we must consider braiding
processes with more than two loops.
Three-loop braiding statistics.—For these reasons, we

are naturally led to consider a braiding process involving
two loops α; β which are linked with a third “base” loop γ
(Fig. 1). When the loop α sweeps around β in a right-
handed manner, it can acquire a statistical Berry phase
which we will denote by θαβ;c where ϕγ ¼ ð2π=NÞc with c
being an integer vector. We use the notation θαβ;c, rather
than θαβ;γ because θ is insensitive to the charge attached to γ
and depends only on its flux ϕγ ¼ ð2π=NÞc. Similarly, we
will also consider an exchange or half-braiding process in
which two identical loops α, which are linked with a base
loop with flux ð2π=NÞc, are braided through one another
and exchange places. The statistical phase associated with
this exchange will be denoted by θα;c. Note that, throughout
this Letter, we assume the loops have Abelian statistics.
These three-loop braiding processes are fundamentally

different from the two-loop case because in the three-loop
topology, the base loop γ may prevent us from shrinking α
and β to a point and annihilating them locally. As a result,
the above argument that vortex loop statistics follow the
Aharonov-Bohm law (2) is no longer valid. Thus, the three-
loop braiding statistics are less constrained than the
two-loop case.
Constraints on θαβ;c and θα;c.—We now discuss the basic

physical constraints on the three-loop braiding statistics.
One of the simplest constraints is that θαβ;c ¼ θβα;c.
To derive this property, we note that a process in which
α winds around β can be smoothly deformed into one
in which β winds around α. Therefore, since the stat-
istical phase is invariant under smooth deformations of the
braiding path, θαβ;c must be symmetric in α and β. Another
obvious constraint is that θαα;c ¼ 2θα;c. This relation is
clear since a full braiding is equivalent to performing two
exchanges in series.
Even more powerful constraints on θ can be obtained by

thinking about “fusion” of vortex loops. More specifically,
there are two distinct ways to fuse loops together. In the
first type of fusion process [Fig. 3(a)], two loops β1; β2 that
are linked to the same loop γ can be fused to form a new
loop “β1 þ β2” that is also linked to γ. In the second type of
fusion process [Fig. 3(b)], two loops β1; β2 that share the
same flux ϕβ1 ¼ ϕβ2 but are linked with two different loops
γ1 and γ2, can be fused to form a loop “β1⊕β2”, which is
linked to both γ1 and γ2. It is not hard to see that θαβ;c must
be linear under both fusion processes [18] (Fig. 4)

FIG. 2. (a) Braiding of two loops α; β. (b) If α; β are neutral, the
two-loop process can be smoothly deformed into a process in
which α is braided around the vacuum. FIG. 3. Two ways to fuse loops together.
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θαðβ1þβ2Þ;c ¼ θαβ1;c þ θαβ2;c; ð3Þ

θðα1⊕α2Þðβ1⊕β2Þ;ðc1þc2Þ ¼ θα1β1;c1 þ θα2β2;c2 : ð4Þ

To derive these identities, it suffices to show that the
processes defined by the left-hand sides of Figs. 4(a)–4(b)
can be smoothly deformed into the processes corres-
ponding to the right-hand sides of Figs. 4(a)–4(b).
These deformations are described in the Supplemental
Material [19].
One implication of the linearity of θ (3)–(4) is that we

can reconstruct all the three-loop statistics from the
statistics of vortex loops with unit flux. The statistics of
these unit fluxes can in turn be summarized by two tensors
Θij;k and Θi;k. These tensors are defined by

Θij;k ≡ Nθαβ;ek ; Θi;k ≡ Nθα;ek ; ð5Þ

where α; β are any two loops carrying unit flux ϕα ¼
ð2π=NÞei and ϕβ ¼ ð2π=NÞej, respectively, and where
ei ≡ ð0;…; 1;…; 0Þ with a 1 in the ith entry and 0
everywhere else. To see why the tensorΘij;k is well-defined
modulo 2π, note that, if we choose another set of loops
α0; β0 with the same flux, then the only possible topological
difference between α0; β0 and α; β is that they may have
different amounts of charge attached to them. But from the
Aharonov-Bohm formula (1), we see that attaching charge
to α and β can only shift the value of θαβ;ek by multiples of
2π=N and, hence, can only shift Θij;k by multiples of 2π.
Similar reasoning applies in the case of Θi;k.
Given that theΘij;k andΘi;k effectively summarize all the

three-loop statistics, all that remains is to find the physical
constraints on these two quantities. We, now, argue that
these constraints are as follows:

Θij;k ¼ Θji;k; Θii;k ¼ 2Θi;k; ð6Þ

Θij;k þ Θjk;i þ Θki;j ¼ 0; ð7Þ

Θik;i þ Θi;k ¼ 0; Θi;i ¼ 0; ð8Þ

Θij;k ¼
2π

N
ðintegerÞ; Θi;k ¼

2π

N
ðintegerÞ: ð9Þ

The first two constraints (6) are obvious, since they are
special cases of the more general relations discussed above.
The quantization conditions (9) are also easy to derive:
for example, to prove the first equation in (9), consider a
thought experiment in which a loop α carrying flux
ϕα ¼ ð2π=NÞei, together with N identical loops β carrying
flux ϕβ ¼ ð2π=NÞej, are all linked to a common base loop
with flux ð2π=NÞek. Now, imagine we fuse the β loops
together to form a new loop B, and then, we braid α around
B. By the linearity of θ (3), the resulting statistical phase is

θαB;ek ¼ Nθαβ;ek ¼ Θij;k: ð10Þ

At the same time, we can see that ϕB ¼ Nϕβ ¼ 0, so B is a
pure charge. It then follows, from the Aharonov-Bohm
formula (1), that θαB;ek ¼ qB · ϕα, which is a multiple of
2π=N. Combining these two observations, we deduce that
Θij;k is a multiple of 2π=N. The proof of the second
equation in (9) is similar.
Equations (7)–(8) are the most interesting constraints

on Θ, as these relations have no analogues in the theory of
2D braiding statistics. We call Eq. (7) the cyclic relation.
A physical derivation of the cyclic relation is given in the
Supplemental Material [19]. The first equation in (8) can be
proved in a similar manner. On the other hand, we do not
have a physical derivation of Θi;i ¼ 0, so this constraint on
Θ is simply a conjecture. This conjecture is supported by
two pieces of evidence: first, all the microscopic models
constructed below obey this relation. Second, we can prove
the weaker, but closely related relation 3Θi;i ¼ 0 (mod 2π)
using the second equation in (6) together with the first
equation in (8).
Dimensional reduction.—We now derive a formula for

the three-loop statistics that will be useful in analyzing
the microscopic models discussed later. This formula is
obtained by considering our system in anLx × Ly × Lz torus
geometry—i.e., a geometry with periodic boundary con-
ditions in all three directions. Let α; β be two loops linked
with a base loop γ carrying flux ϕγ ¼ ð2π=NÞc [Fig. 5(a)].
For concreteness, suppose that γ lies in the xy plane while
α; β lie in the xz plane. When α sweeps around β, it gives
rise to a statistical phase θαβ;c which we wish to compute. To
this end, we stretch α in the z direction until it wraps all the
way around the periodic z direction. We can then fuse αwith
itself, thereby splitting α into two noncontractible loops α0
and α00 [Fig. 5(b)]. Similarly, we can stretch β in the z
direction and fuse it with itself so that it splits into β0 and β00.
It is clear that the braiding process involving α and β can now
be decomposed into two separate processes in which α0 is
braided around β0 and α00 is braided around β00. Since these
two processes are separate, we can think of them as taking
place in two separate systems [Fig. 5(c)]. Furthermore, for
the process involving α0; β0 we can stretch γ in the xy plane
so that it fuses and annihilates itself. This effectively leaves a
gauge flux ϕγ ¼ ð2π=NÞc through one of the three holes of

FIG. 4. Braiding processes associated with equations (3)
[panel (a)] and (4) [panel (b)]. Here, ϕγ ¼ ð2π=NÞc, while
ϕγ1 ¼ ð2π=NÞc1 and ϕγ2 ¼ ð2π=NÞc2.

PRL 113, 080403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

080403-3



the 3D torus—more precisely, the hole bounded by a
noncontractible cycle along the z direction (the “z hole”).
Likewise, for the process involving α00; β00 we can shrink γ in
the xy plane until it fuses and annihilates itself, leaving no
gauge flux through the z hole. In this way, we see that θαβ;c
can be expressed as

θαβ;c ¼ θα0β0;c − θα00β00;0; ð11Þ

where the quantities on the right-hand side are statistical
phases associated with braiding two vortex lines around one
another in the xy plane. In the first term, this braiding takes
place in the presence of a gauge flux ð2π=NÞc through the z
hole, while, in the second term, there is no such gauge flux.
The relative sign comes from the fact that the two pairs are
braided in opposite directions. The formula (11) is useful
because each of the terms on the right-hand side can be
thought of as braiding statistics of a 2D system if we take the
thermodynamic limit Lx, Ly → ∞, while keeping Lz finite
but larger than the correlation length. An analogous formula
can be derived for the exchange statistics θα;c.
Microscopic models.—To obtain examples of systems

with nontrivial three-loop statistics, we consider “gauged”
SPT models—that is, we take the exactly soluble lattice
boson models of Ref. [8] which realize different SPT
phases, and we couple them to a gauge field. These gauged
SPT models can be equivalently [11] thought of as
Dijkgraaf-Witten models [20]. As above, we focus on
the case where the symmetry group is G ¼ ðZNÞK .
As discussed in Ref. [8], the basic input for constructing

a 3D gauged SPT model is a four-cocycle ω∶G4 → Uð1Þ.
If two cocycles ω1;ω2 differ by a four-coboundary ν, i.e.,
ω1 ¼ ω2 · ν, then the corresponding models belong to the
same SPT phase. Thus, inequivalent models are classified
by elements of the cohomology group H4½G;Uð1Þ�. Here,
we focus on four-cocycle ω of the form

ωða; b; c; dÞ ¼ eði2π=N
2Þ
P

ijk
Mijkaibjðckþdk−½ckþdk�Þ; ð12Þ

where Mijk is an integer tensor, and we parametrize the
different group elements of G ¼ ðZNÞK with integer

vectors a ¼ ða1;…; aKÞ with ai ¼ 0;…; N − 1. The
square bracket [ck þ dk] is defined to be ck þ dk
(mod N) with values taken in the range 0;…; N − 1.
Our task is to compute the three-loop statistics Θij;k and

Θi;j of the gauged SPT model with cocycle ω. The details
of this calculation, which is based on the formula (11),
can be found in the Supplemental Material [19]. The end
result is

Θij;k ¼
2π

N
ðMikj −Mkij þMjki −MkjiÞ;

Θi;j ¼
2π

N
ðMiji −MjiiÞ: ð13Þ

As a consistency check, one can easily verify that these
expressions satisfy conditions (6)–(9). Conversely, it is a
straightforward mathematical exercise to check that every
Θij;k and Θi;j that obeys (6)–(9) can be written in the form
(13) for someMijk. Hence, every solution to (6)–(9) can be
physically realized as a gauged SPT model.
Examples.—The simplest example is G ¼ ZN . In this

case, M has only one component M111, and (13) gives
trivial loop statistics, Θii;i ¼ Θi;i ¼ 0, for any choice of M.
This is a reasonable result since H4½ZN;Uð1Þ� ¼ 0, so all
the SPT models with G ¼ ZN are equivalent to product
states [8].
The simplest nontrivial example is given by G ¼ ðZNÞ2.

In this case, if we choose M211 ¼ p1, M122 ¼ p2, and all
other components vanishing, we obtain the three-loop
statistics shown in Table I. We can see that there are N2

distinct types of statistics that can be realized by the gauged
SPT models with G ¼ ðZNÞ2. This is also a reasonable
result since H4½ðZNÞ2; Uð1Þ� ¼ ðZNÞ2, so the SPT models
realize N2 distinct phases [8,21]. Evidently, each phase is
associated with a different type of three-loop statistics.
Discussion.—The above examples show that the gauged

SPT phases with G ¼ ZN and G ¼ ðZNÞ2 are uniquely
characterized by their three-loop statistics. More generally,
we find it plausible that every 3D SPT phase with unitary
symmetries is uniquely characterized by its three-loop
statistics—similar to what has been proposed in the 2D
case [11]. One subtlety in checking this conjecture for more
general G ¼ ðZNÞK is that, when K ≥ 4, the cocycles (12)
do not exhaust all elements of H4½G;Uð1Þ�. Furthermore,
the remaining elements of H4½G;Uð1Þ� can lead to non-
Abelian three-loop statistics (see Ref. [22] for examples of
this phenomenon in the 2D case). Thus, a theory of non-
Abelian loop statistics may be necessary to proceed further
in this direction.

TABLE I. Θij;k for the SPT models with ðZNÞ2 symmetry.

Θ11;1 Θ12;1 Θ22;1 Θ11;2 Θ12;2 Θ22;2

0 ð2π=NÞp1 −ð4π=NÞp2 −ð4π=NÞp1 ð2π=NÞp2 0

FIG. 5 (color online). Computing three-loop statistics from 2D
braiding.
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Is three-loop statistics measurable? In principle, three-
loop statistics could be measured experimentally by per-
forming interferometry on looplike excitations; in practice,
such an experiment would be challenging. A more straight-
forward application is to numerical simulations, where
three-loop statistics could be directly extracted from an
appropriate Berry phase computation.

We thank M. Cheng, C.-H. Lin, and A. Vishwanath
for helpful discussions. This work is supported by the
Alfred P. Sloan Foundation and NSF under Grant
No. DMR-1254721.

Note added.—Recently, we became aware of an indepen-
dent work [23] containing related results on three-loop
statistics. Other recent work on this topic includes
Refs. [24,25].
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