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Precise identification of parameters governing quantum processes is a critical task for quantum
information and communication technologies. In this Letter, we consider a setting where system evolution
is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal
records of a restricted set of system observables (time traces). Based on the notion of system realization
from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown
parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement
noise by applying it to a one-dimensional spin chain model with variable couplings.
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The promise of quantum technologies for tasks such as
computation, communication, and metrology is motivating
the construction of devices that are precisely engineered at
the nanoscale, and whose quantum dynamics are excep-
tionally well characterized and controlled [1]. The fragility
and sensitivity of typical quantum devices make achieving
such objectives extremely challenging, and significant
research efforts over the past two decades have focused
on addressing these challenges.
Process tomography is the most generally applied

technique for characterizing an unknown quantum dynami-
cal process [1,2]. However, all variants of process tomog-
raphy are very resource demanding, e.g., in the required
number of measurements settings and number of input state
preparations. In addition, it is often unsuitable in resource-
constrained situations where one may only have measure-
ment access to certain observables or subsystems; e.g., see
Fig. 1. Furthermore, process tomography does not utilize
often available partial information about the system. One
such common scenario is when the structure of a dynamical
model can be obtained from underlying physics, and what
is to be determined are some unknown parameters in the
model. This is the quantum version of parameter estimation
in classical system sciences, and some previous work
has considered variants to quantum tomography for this
problem [3].
In this work, we consider a new approach to quantum

parameter estimation. Whereas process tomography typi-
cally measures a complete basis of system observables at
one time instant, we ask what can be achieved if a temporal
record of a small set of system observables is collected? We
refer to such a successive record of observable expectations
as a measurement time trace, and develop a method that
enables information about dynamical parameters to be
extracted from such time traces. Our method takes into
account a priori information and fits naturally into resource

constrained situations, and as such, we expect that it will be
very experimentally relevant and feasible. Additionally,
because our scheme utilizes a time trace, it can identify the
generator of dynamics (e.g., a Hamiltonian) as opposed to
the dynamical map (e.g., a unitary at a fixed time), which is
typically what process tomography achieves. This is
advantageous since, in physically realistic scenarios, the
generator of dynamics is more compactly specified than the
map. This will be discussed in more detail below.
Several authors have considered parameter estimation

from various types of time-dependent measurement records
[4–14]. Particularly relevant to this work, Cole et al. used
Fourier analysis to identify a single qubit Hamiltonian from
one measurement observable [5], and Devitt et al. pre-
sented a scheme to identify any two-qubit Hamiltonian
from the temporal evolution of the concurrence measure
of entanglement [6]. Subsequent work by Burgarth et al.
[8,9] and Di Franco et al. [10] generalized this approach to
estimate the coupling strengths in a many-qubit network
from measurements on a small part of the network.
Recently, Burgarth et al. presented a framework for
quantum system identification based on input-output

FIG. 1 (color online). A spin (or qubit) lattice as an example
illustrating the type of system considered in this work. The spins
interact with each other through nearest-neighbor or long-range
couplings and certain local observables are measurable for a
subset of the spins (circled above). The task is to identify
the parameters defining the Hamiltonian of the interconnected
system from a time trace of expectation values of these
observables.
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information and formalized the notion of equivalence
between system realizations [15].
Our approach differs from existing work on quantum

system identification in two critical aspects. First, we
develop a constructive algorithm for identification of
arbitrary Hamiltonian quantum dynamics that takes advan-
tage of available prior knowledge of the system (e.g.,
network structure or partial knowledge of parameters). The
technique can also be employed when such prior informa-
tion is absent. Second, in contrast to most existing system
identification schemes, we do not require state tomography
of a restricted set of subsystems, but rather develop a
technique that produces parameter estimates based only on
the collected measurement time traces.
Setup.—We consider the task of identifying the

Hamiltonian of an unknown quantum dynamical process.
Assume that the dimension of the system is finite and
known, and that the dynamical process can be prepared at
some well-characterized initial states. Further, we assume
that the dynamical evolution of the process is unitary (no
decoherence). This condition can be relaxed and the
approach will be extended to the nonunitary case in a
future publication.
A parametrized form of the Hamiltonian governing the

quantum dynamical process can be written as

H ¼
XM
m¼1

amðθÞXm; ð1Þ

where θ is a vector consisting of unknown parameters,
am ∈ R are some known functions of θ, and Xm are known
Hermitian operators [16]. Assume that the dimension of the
quantum process is N, and thus, iH ∈ suðNÞ, i.e., the Lie
algebra consisting of all the N × N skew-Hermitian matri-
ces. An orthonormal basis of N2 − 1 matrices fiXmg can
be chosen for suðNÞ, where the Hilbert-Schmidt inner
product is defined as hiXm; iXni≡ trðX†

mXnÞ, and hence,
am ¼ trðHXmÞ. For example, ði=2Þσ1α ⊗ σ2β form a basis
for the two-qubit algebra suð4Þ, where σα, σβ can be Pauli
matrices σx, σy, σz, or the identity matrix I2, and super-
scripts label the qubits [17]. The numbers Cjkl such that

½iXj; iXk� ¼
XN2−1

l¼1

CjklðiXlÞ; j; k ¼ 1; � � � ; N2 − 1;

are the structure constants of the Lie algebra suðNÞ with
respect to this basis. Each element Xm is Hermitian and,
thus, can be considered an observable for the system.
Furthermore, we can consider the am as our unknown
parameters, because solving for θ from am is simply an
algebraic problem.
Note that in Eq. (1), typically M ≪ N2 − 1 because of

physical constraints on system energy, locality, and weight
of interactions. For instance, the Hamiltonian for the spin

lattice system in Fig. 1 contains only weight-one and
weight-two basis elements Xm [18], and furthermore, the
weight-two interactions might be restricted to only being
between nearest-neighbor spins on the lattice. By utilizing
measurement time traces our identification algorithm can
estimate the process at the Hamiltonian level where there
are only M unknown parameters. In contrast, process
tomography generally does not consider time traces and,
therefore, must estimate the process at the unitary level
where there are, in general, N2 − 1 unknown parameters.
Observable dynamics.—The dynamics of the expect-

ation value of an observable Xk, written as xk ¼ hψ jXkjψi,
can be derived as

_xk ¼
XN2−1

l¼1

�XM
m¼1

Cmklam

�
xl: ð2Þ

Collecting the xk in a vector x ∈ RN2−1, we obtain a linear
equation describing the complete dynamics

_x ¼ Ax; xkð0Þ ¼ hψð0ÞjXkjψð0Þi; ð3Þ
where the matrix A ∈ RðN2−1Þ×ðN2−1Þ has elements Akl ¼P

M
m¼1 Cmklam. Using the antisymmetries of the structure

constants, it can be shown that AT ¼ −A. The vector x,
often called the coherence vector [19], is a complete
representation of the quantum state. Equation (3) explicitly
describes the quantum dynamics as a linear time invariant
system, and hence, it enables application of results from
classical linear systems theory.
Typically, some observable expectation values may be

easily measured; e.g., local observables of a collection of
spins are tracked as a function of time; see Fig. 1. Often the
measured observables belong to the chosen suðNÞ basis,
but if not, each observable Oi can be expanded in this
basis as Oi ¼

P
jo

ðiÞ
j Xj. Collect the unique basis elements

present in the expansion of all measured observables in
the set M ¼ fXν1 ; Xν2 ;…; Xνpg, where ν is a vector of

length p. For example, if O1 ¼ oð1Þ3 X3 þ oð1Þ5 X5 and

O2 ¼ oð2Þ2 X2 þ oð2Þ3 X3, with oðjÞk ∈ R, then p ¼ 3 and
M ¼ fX2; X3; X5g. Generally, p ≪ N2 − 1.
In the following, we will use time traces of the measured

observable expectation values to identify the unknown
Hamiltonian parameters. To this end, we first need to
derive the dynamical equation governing the time evolution
of these observables. Parallel to the study of controllability
in classical nonlinear systems theory [20], we give a
constructive procedure to obtain the closed dynamics for
these observables. For the Hamiltonian in Eq. (1), let
Δ ¼ fXmgMm¼1. Define an iterative procedure as

G0 ¼ M; and Gi ¼ ½Gi−1;Δ�∪Gi−1; ð4Þ
where ½Gi−1;Δ�≡ fXj∶ trðX†

j ½g; h�Þ ≠ 0;where g ∈ Gi−1;
h ∈ Δg [21]. In geometric control theory, the sequence
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of Gi are referred to as the filtration associated to Δ [20].
Since suðNÞ is finite, this iteration will saturate at a
maximal set Ḡ after finite steps, and we refer to this set
as the accessible set. Intuitively, the set Ḡ contains the
elements of the system that couple to the measured
observables. Then, writing all the xk with Xk ∈ Ḡ in a
vector xa of dimension K ≤ N2 − 1, the dynamics for this
vector is given by

_xa ¼ ~Axa; ð5Þ

where ~A is a K × K submatrix of A, i.e., only the elements
necessary to describe the evolution of the subset of
observable averages collected in xa.
Identification algorithm.—A necessary condition for the

identifiability of am is that it be present in the matrix ~A,
because, otherwise, it would not participate in the dynami-
cal equation (5), and there would be no way to infer its
value from examining the observables in M. In order to
estimate these identifiable parameters, we utilize the notion
of a system realization constructed from the measurement
time traces. In linear systems theory, there are many
methods for constructing a realization of a linear dynamical
system based on measurement results [22], and in the
following, we adapt one of these, the eigenstate realization
algorithm (ERA) [23], for the purposes of Hamiltonian
parameter estimation.
The estimation setting we consider is the following.

Suppose we have access to the expectation values of the
observables in M at regular time instants jΔt for some
sampling period Δt [24]. Denote these values as fyðjΔtÞg,
and they may have to be collected from averaging mea-
surements on several runs of the experiment under the same
initial state. Note that yðjΔtÞ is the output of the following
discretized form of Eq. (5):

xaðjþ 1Þ ¼ ~AdxaðjÞ; yðjÞ ¼ CxaðjÞ; ð6Þ

where for brevity of notation we use xaðjÞ≡ xaðjΔtÞ and
yðjÞ≡ yðjΔtÞ, and ~Ad ¼ e ~AΔt. The p × K matrix C picks
up the entries in xaðjÞ that correspond to expectation values
of elements ofM. Also, assume that the system is prepared
at a fixed, known initial state xð0Þ, and the corresponding
initial state for Eq. (6) is xað0Þ. Then, these relations can
be solved easily to obtain an explicit form for the outputs:
yðjÞ ¼ C ~Aj

dxað0Þ. Having access to the time trace yðjÞ,
one may try to solve this set of equations directly. However,
since ~Ad is a transcendental function of am, determining the
parameters this way is usually infeasible. Instead, we will
utilize ERA and formulate a new relationship so that
parameter estimation only requires solving polynomial
equations.
The first stage of the estimation algorithm is to construct

a minimal realization of the system based on input-output
information. This is achieved by ERA in three steps, as

follows. Step (1) Collect the measured data into an rp × s
matrix (generalized Hankel matrix) as

HrsðkÞ

¼

2
666664

yðkÞ yðkþ t1Þ ��� yðkþ ts−1Þ
yðj1þkÞ yðj1þkþ t1Þ ��� yðj1þkþ ts−1Þ

..

. ..
. ..

.

yðjr−1þkÞ yðjr−1þkþ t1Þ ��� yðjr−1þkþ ts−1Þ

3
777775
;

with arbitrary integers ji (i ¼ 1; � � � ; r − 1) and tl
(l ¼ 1; � � � ; s − 1). Step (2) Find the singular value decom-
position of Hrsð0Þ as

Hrsð0Þ ¼ P

�Σ 0

0 0

�
QT ¼ ½P1 P2 �

�Σ 0

0 0

��
QT

1

QT
2

�
;

where P ∈ Rrp×rp, Q ∈ Rs×s are both orthonormal, and Σ
is a diagonal matrix with the nonzero singular values of
Hrsð0Þ determined up to numerical accuracy ϵ, i.e., Σii > ϵ
for all i ≤ nΣ where nΣ is the dimension of Σ. The matrices
P1, P2, Q1, Q2 are partitions with compatible dimensions.
Step (3) Form a realization of the system (6) as
Âd ¼ Σ−ð1=2ÞPT

1Hrsð1ÞQ1Σ−ð1=2Þ, Ĉ ¼ ET
pP1Σð1=2Þ, where

ET
p ¼ ½Ip; 0p; � � � ; 0p�. The pair (Âd, Ĉ) reproduces the

input-output relations specified by Eq. (6), that is,

yðjÞ ¼ C ~Aj
dxað0Þ ¼ ĈÂj

dx̂ð0Þ; for all j ≥ 0; ð7Þ

provided that x̂ð0Þ≡ Σð1=2ÞQT
1e1, where e1 is the first

column of Is.
This completes the specification of the ERA algorithm.

Then let Â ¼ log Âd=Δt [24]. This results in a realization
of the continuous-time linear system in the form of the
triple (Â, Ĉ, x̂ð0Þ). Now, to estimate the Hamiltonian
parameters we use an invariant of different realizations, the
transfer function [22], to form equations for the unknown
parameters. Specifically, the transfer function from an
initial state xð0Þ to the measurement observables specified
by C can be written as GðsÞ ¼ CðsI −AÞ−1xð0Þ, where
s ∈ C is the Laplace variable. Equating the transfer
functions for the original system with unknown parameters
and the ERA realization, we get

CðsI − ~AÞ−1xað0Þ ¼ ĈðsI − ÂÞ−1x̂ð0Þ: ð8Þ
The right-hand side of Eq. (8) is completely determined by
the measured data, and the left-hand side can be simplified
as the ratio QðsÞ=PðsÞ [22], where

PðsÞ ¼ detðsI − ~AÞ;

QðsÞ ¼ det

�
s

�
I 0
0 0

�
−
�
~A xað0Þ
C 0

��
:

ð9Þ
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The coefficients of QðsÞ, PðsÞ are all polynomials of the
Hamiltonian parameters am. Equating these coefficients
with those in the right-hand side of Eq. (8), we obtain a
system of polynomial equations. Solving these multivariate
polynomial equations leads to the identification of am.
A judicious choice for the initial state is crucial to this

identification scheme. For instance, if xa is zero or an
eigenvector of ~A, it leads to no sensitivity in the output to
any of the unknown parameters. Care must be taken to
avoid such degenerate cases. In fact, running the algorithm
with multiple initial states leads to more polynomial
equations with low order and, thus, helps to solve these
equations more efficiently.
This system identification algorithm can result in multi-

ple estimates of the unknown parameters, all of which
satisfy the input-output relations captured by Eq. (8). This
is because several system Hamiltonians can generate the
same map between an input state and measurement time
trace and, hence, are equivalent from an input-output
perspective [15]. When the algorithm results in multiple
parameter estimates and more specification is needed, one
has to appeal to prior information, or add resources such as
additional input states or observable time traces.
Example.—Consider the following Hamiltonian for a

one-dimensional chain of n qubits:

H ¼
Xn
k¼1

ωk

2
σkz þ

Xn−1
k¼1

δkðσkþσkþ1
− þ σk−σ

kþ1
þ Þ:

This Hamiltonian is often used as a model for a spin “wire”
that enables quantum state transfer [25]. Suppose that only
one end of the spin chain is observable, and choose hσ1xi as
the observable that is tracked. Choosing the generalized
Pauli operators as our basis and calculating the filtration
per Eq. (4) yields the accessible set as Ḡ ¼ f2−n=2σ1x;
2−n=2σ1yg∪f2−n=2σ1z � � � σk−1z σkx; 2−n=2σ1z � � � σk−1z σkygnk¼2. The
system matrix ~A is 2n × 2n and has the following simple
structure:

~A¼

2
6666666666666666664

0 ω1 0 −δ1
−ω1 0 δ1 0 0

0 −δ1 0 ω2 0 . .
.

δ1 0 −ω2 0 . .
. . .

.
0

0 . .
. . .

. . .
. . .

. . .
.

−δn−1
. .
. . .

. . .
.

0 δn−1 0

0 0 −δn−1 0 ωn

δn−1 0 −ωn 0

3
7777777777777777775

;

with xa ¼ ½x̄1; ȳ1;…; x̄n; ȳn�, where x̄1 ≡ hσ1xi, ȳ1 ≡ hσ1yi
and x̄k ≡ hσ1z � � � σk−1z σkxi, ȳk ≡ hσ1z � � � σk−1z σkyi for k ≥ 2.

In this basis, C ¼ ½1; 0; 0;…; 0�. All parameters in the
Hamiltonian appear in ~A, and therefore, the necessary
condition for identifying all parameters is satisfied for an
estimation strategy that uses only time traces of hσ1xi.
Choosing an initial state ðj0i þ ij1i= ffiffiffi

2
p Þj0 � � � 0i (with

corresponding coherence vector ½0; 1; 0; � � � ; 0�T), and run-
ning ERA results in a realization ðÂ; Ĉ; x̂ð0ÞÞ. The transfer
function is given by

CðsI− ~AÞ−1xað0Þ¼
q2n−2s2n−2þ���þq2s2þq0

s2nþp2n−2s2n−2þ���þp2s2þp0

;

where the detailed expressions of the coefficients pi and qi
as polynomials of ωk and δk can be calculated via Eq. (9).
These equations can be solved by mature numerical tool
boxes such as PHCPACK [26] to obtain the unknown
parameters ωk and δk. In the Supplemental Material
[24], we simulate time traces for this model with n ¼ 3
and solve these polynomial equations to explicitly dem-
onstrate the parameter estimation algorithm [24]. In the
absence of measurement noise, the parameters can be
perfectly identified up to sign of δk. The sign ambiguity
is because the coupling strengths only occur to even order
in the polynomial equations when the local observable
being measured is hσ1xi. Additional measurements or prior
information are required to determine the sign.
Experimental measurements of observable expectation

values will inevitably be noisy, and therefore, we also
assess the performance of our estimation algorithm in the
presence of measurement noise. Consider the case where
the measurements in the three-qubit example specified in
the Supplemental Material [24] are corrupted by additive
Gaussian noise, i.e., yðjÞ ¼ hσ1xiðjÞ þ ηðjÞ, with ηðjÞ∼
N ð0; σÞ. The observable hσ1xiðjÞ lies in the range
[−1, 1], and we consider noise with σ values 0.01, 0.05,
0.10, 0.15, 0.20, and 0.25. For each σ, we generate 4000
Gaussian noise trajectories and estimate the five parame-
ters, θ ¼ ðω1;ω2;ω3; δ1; δ2Þ, from each noisy measurement
trace. Figure 2 shows summary statistics that demonstrate
the accuracy and robustness of the estimation procedure.
The relative error in the mean of the parameter estimates,

(a) (b)

FIG. 2 (color online). Assessing the robustness of the parameter
estimation algorithm. The x axis in both figures is the standard
deviation of the measurement noise, σ. (a) Percentage relative
error in mean of estimates. (b) Standard deviation of estimates.
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ð ¯̂θi − θiÞ=θi × 100% [27], remains small, whereas the
standard deviation of the estimates scales approximately
linearly with σ. Further characterization of the robustness
of the procedure to measurement noise is presented in the
Supplemental Material [24]. We note that the robustness of
our method is a function of the realization algorithm (ERA)
and realization invariant used to construct the polynomial
equations. In fact, we experimented with another invariant,
the Markov parameters of a system, and discovered that it is
not as robust to noise as the transfer function approach
presented here.
Conclusion.—We have developed a robust algorithm

to identify the unknown parameters of a quantum
Hamiltonian from the time traces of a set of system
observables, which naturally takes into account prior
information and restrictions on measurement access. A
direction for future work is the generalization of this
algorithm to parameter estimation for open quantum
systems governed by Lindblad evolution [28], in which
case the evolution of the coherence vector is described by
an affine time-invariant system of equations [19].

M. S. thanks Akshat Kumar for information on tech-
niques for solving multivariate polynomial systems. This
work was supported by the Laboratory Directed Research
and Development program at Sandia National Laboratories.
Sandia is a multiprogram laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the United States
Department of Energy’s National Nuclear Security
Administration under Contract No. DE-AC04-
94AL85000. J. Z. acknowledges financial support from
NSFC under Grant No. 61174086, and State Key
Laboratory of Precision Spectroscopy, ECNU, China.
The authors are grateful for the hospitality of KITP at
UCSB, where this work was initiated. This research was
supported in part by the National Science Foundation under
Grant No. NSF PHY11-25915.

*mnsarov@sandia.gov
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press,
Cambridge, England, 2001).

[2] M. Mohseni, A. T. Rezakhani, and D. A. Lidar, Phys. Rev. A
77, 032322 (2008).

[3] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys.
Rev. Lett. 107, 210404 (2011).

[4] N. Boulant, T. F. Havel, M. A. Pravia, and D. G. Cory, Phys.
Rev. A 67, 042322 (2003).

[5] J. H. Cole, S. G. Schirmer, A. D. Greentree, C. J. Wellard,
D. K. L. Oi, and L. C. L. Hollenberg, Phys. Rev. A 71,
062312 (2005).

[6] S. J. Devitt, J. H. Cole, and L. C. L. Hollenberg, Phys. Rev.
A 73, 052317 (2006).

[7] K. C. Young, M. Sarovar, R. Kosut, and K. B. Whaley, Phys.
Rev. A 79, 062301 (2009).

[8] D. Burgarth, K. Maruyama, and F. Nori, Phys. Rev. A 79,
020305 (2009).

[9] D. Burgarth and K. Maruyama, New J. Phys. 11, 103019
(2009).

[10] C. Di Franco, M. Paternostro, and M. S. Kim, Phys. Rev.
Lett. 102, 187203 (2009).

[11] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, New J.
Phys. 14, 103013 (2012).

[12] Y. Kato and N. Yamamoto, New J. Phys. 16, 023024
(2014).

[13] J. M. Dominy, L. C. Venuti, A. Shabani, and D. A. Lidar,
arXiv:1312.0973v1.

[14] V. Jagadish and A. Shaji, arXiv:1401.1058v1.
[15] D. Burgarth and K. Yuasa, Phys. Rev. Lett. 108, 080502

(2012).
[16] We set ℏ ¼ 1, and therefore, the am have units 1=s.
[17] In the following, we will omit the tensor product when

writing multiqubit Pauli operators for brevity.
[18] The weight of a multiqubit Pauli operator is the number of

nonidentity terms in the tensor product.
[19] K. Lendi, J. Phys. A 20, 15 (1987).
[20] S. Sastry, Nonlinear Systems (Springer, New York,

1999).
[21] We do not need to keep track of multiplicative constants,

only the operators generated by these commutators.
[22] F. M. Callier and C. A. Desoer, Linear System Theory

(Springer, New York, 1991).
[23] J. N. Juang and R. S. Pappa, J. Guid. Control Dyn. 8, 620

(1985).
[24] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.080401, which in-
cludes Refs. [29–30], for discussion of appropriate choice of
Δt and an application of the system identification algorithm.

[25] S. Bose, Contemp. Phys. 48, 13 (2007).
[26] Y. Guan and J. Verschelde, PHClab: A MATLAB/Octave

Interface to PHCpack, IMA: Software for Alge. Geom.
Vol. 148 (Springer-Verlag, Berlin, 2008).

[27] X̄ is the empirical mean of the random variable X.
[28] H.-P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems (Oxford University Press, New York,
2002).

[29] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital
Control of Dynamic Systems (Addison-Wesley, Reading,
MA, 1997).

[30] N. J. Higham, Functions of Matrices: Theory and Compu-
tation (SIAM, Philadelphia, 2008).

PRL 113, 080401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

080401-5

http://dx.doi.org/10.1103/PhysRevA.77.032322
http://dx.doi.org/10.1103/PhysRevA.77.032322
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevA.67.042322
http://dx.doi.org/10.1103/PhysRevA.67.042322
http://dx.doi.org/10.1103/PhysRevA.71.062312
http://dx.doi.org/10.1103/PhysRevA.71.062312
http://dx.doi.org/10.1103/PhysRevA.73.052317
http://dx.doi.org/10.1103/PhysRevA.73.052317
http://dx.doi.org/10.1103/PhysRevA.79.062301
http://dx.doi.org/10.1103/PhysRevA.79.062301
http://dx.doi.org/10.1103/PhysRevA.79.020305
http://dx.doi.org/10.1103/PhysRevA.79.020305
http://dx.doi.org/10.1088/1367-2630/11/10/103019
http://dx.doi.org/10.1088/1367-2630/11/10/103019
http://dx.doi.org/10.1103/PhysRevLett.102.187203
http://dx.doi.org/10.1103/PhysRevLett.102.187203
http://dx.doi.org/10.1088/1367-2630/14/10/103013
http://dx.doi.org/10.1088/1367-2630/14/10/103013
http://dx.doi.org/10.1088/1367-2630/16/2/023024
http://dx.doi.org/10.1088/1367-2630/16/2/023024
http://arXiv.org/abs/1312.0973v1
http://arXiv.org/abs/1401.1058v1
http://dx.doi.org/10.1103/PhysRevLett.108.080502
http://dx.doi.org/10.1103/PhysRevLett.108.080502
http://dx.doi.org/10.1088/0305-4470/20/1/011
http://dx.doi.org/10.2514/3.20031
http://dx.doi.org/10.2514/3.20031
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.080401
http://dx.doi.org/10.1080/00107510701342313

