
Network Controllability Is Determined by the Density of Low In-Degree
and Out-Degree Nodes

Giulia Menichetti
Department of Physics and Astronomy and INFN Sezione di Bologna, Bologna University, Viale Berti Pichat 6/2, 40127 Bologna, Italy

Luca Dall’Asta
Department of Applied Science and Technology DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

and Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy

Ginestra Bianconi
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

(Received 17 May 2014; revised manuscript received 7 July 2014; published 13 August 2014)

The problem of controllability of the dynamical state of a network is central in network theory and has
wide applications ranging from network medicine to financial markets. The driver nodes of the network are
the nodes that can bring the network to the desired dynamical state if an external signal is applied to them.
Using the framework of structural controllability, here, we show that the density of nodes with in degree
and out degree equal to one and two determines the number of driver nodes in the network. Moreover, we
show that random networks with minimum in degree and out degree greater than two, are always fully
controllable by an infinitesimal fraction of driver nodes, regardless of the other properties of the degree
distribution. Finally, based on these results, we propose an algorithm to improve the controllability of
networks.
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The controllability of a network [1–10] is a fundamental
problem with wide applications ranging from medicine and
drug discovery [11], to the characterization of dynamical
processes in the brain [12–14], or the evaluation of risk in
financial markets [15]. While the interplay between the
structure of the network [16–19] and the dynamical
processes defined on them has been an active subject of
complex network research for more than ten years [20,21],
only recently has the rich interplay between the control-
lability of a network and its structure started to be
investigated. A pivotal role in this respect has been played
by a paper by Liu et al. [6], in which the problem of finding
the minimal set of driver nodes necessary to control a
network was mapped into a maximum matching problem.
Using a well established statistical mechanics approach
[22–27], Liu et al. [6] characterize in detail the set of driver
nodes for real networks and for ensembles of networks with
given in-degree and out-degree distribution. By analyzing
scale-free networks with minimum in degree and minimum
out degree equal to one, they have found that the smaller the
power-law exponent γ of the degree distribution, the larger
is the fraction of driver nodes in the network. This result
has prompted the authors of [6] to say that the higher the
heterogeneity of the degree distribution, the less control-
lable is the network. Later, different papers addressed
questions related to controllability of networks with similar
tools [7,28].
In this Letter, we consider the network controllability

and its mapping to the maximum matching problem,

exploring the role of low in-degree and low out-degree
nodes in the network. We show that by changing the
fraction of nodes with in degree and out degree less than
three, the number of driver nodes of a network can change
in a dramatic way. In particular, if the minimum in degree
and the minimum out degree of a network are both greater
than two, then any network, independently on the level of
heterogeneity of the degree distribution, is fully control-
lable by an infinitesimal fraction of nodes. Therefore,
we show that the heterogeneity of the network is not the
only element determining the number of driver nodes in
the network and that this number is very sensible on the
fraction of low in-degree and low out-degree nodes of
the network. This result allows us to propose a method to
improve the controllability of networks by decreasing the
density of nodes with in degree and out degree less than
three, adding links to the network.
The structural controllability of a network.—Given a

graph G ¼ ðV; EÞ of N nodes, we consider a continuous-
time linear dynamical system

dxðtÞ
dt

¼ Axþ Bu; ð1Þ

in which the vector xðtÞ, of elements xiðtÞ with
i ¼ 1; 2;…; N, represents the dynamical state of the net-
work, A is an N × N (asymmetric) matrix describing the
directed weighted interactions within the network, and B is
an N ×M matrix describing the interaction between the
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nodes of the graph and M ≤ N external signals, indicated
by the vector uðtÞ of elements uα and α ¼ 1; 2…M. For
any given realization of A and B, the dynamical system
is controllable if it satisfies Kalman’s controllability rank
condition; i.e., the matrix C ¼ ðB; AB; A2B;…; AN−1BÞ is
full rank. In addition to the fact that the verification of
Kalman’s condition can be computationally very demand-
ing for large systems, in most real systems, the notion of
exact controllability is unusable since the entries of A and B
are not perfectly known. As an alternative, if we assume
that the nonzero matrix elements of A and B are free
parameters, we can consider the concept of structural
controllability [5]. The system is structurally controllable
if, for any choice of the free parameters in A and B, except
for a variety of zero Lebesgue measure in the parameter
space, C is full rank [5]. Since structural controllability
only distinguishes between zero and nonzero entries of the
matrices A and B, a given directed network is structurally
controllable if it is possible to determine the input nodes
(i.e., the position of the nonzero entries of matrix B) in a
way to control the dynamics described by any realization
of matrix A with the same nonzero elements, except for
atypical realizations of zero measure. In practice, a network
can be structurally controlled by identifying a minimum
number of driver nodes, that are controlled nodes which
do not share input vertices. In their seminal paper [6], Liu
and co-workers showed that this control theoretic problem
can be reduced to a well-known optimization problem: their
minimum input theorem states that the minimum set of
driver nodes that guarantees the full structural controllabil-
ity of a network is the set of unmatched nodes in a
maximum matching of the same directed network.
The maximum matching problem.—A matching M of a

directed graph is a set of directed edges without common
start or end vertices, and it is maximumwhen it contains the
maximum possible number of edges. The problem of
finding a maximum matching of a directed graph can be
cast on a statistical mechanics problem, by introducing
variables sij ∈ f1; 0g on each directed link from node i to
node j, indicating whether the directed link is in M
(sij ¼ 1) or not (sij ¼ 0). The configurations of variables
fsijg have to satisfy the following matching condition:

X
j∈∂þi

sij ≤ 1;
X
j∈∂−i

sji ≤ 1; ð2Þ

where ∂−i indicates the set of nodes j that point to node i in
the directed network, and ∂þi indicates the set of nodes j
that are pointed by node i. Moreover, the variables fsijg
should minimize the energy function

E ¼ 2
XN
i¼1

�
1 −

X
j∈∂−i

sji

�
: ð3Þ

Note that a vertex is matched if it is the endpoint of one
of the edges in the matching, otherwise, the vertex is

unmatched. It follows that E ¼ 2ND, where ND is the
number of unmatched nodes in the network, and this number
also determines the minimum number of driver nodes requ-
ired to fully control the network. Following Refs. [6,22], we
use the cavity method in the zero-temperature limit to study
the statistical properties of maximum matchings on directed
random graphs for which the locally tree-like approxi-
mation holds. Under the decorrelation (replica-symmetric)
assumption, the energy of a maximum matching can be
written in terms of the cavity fields (ormessages)hi→j or ĥi→j
sent from a node i to the linked node j. The fields are sent in
the same direction hi→j or in the opposite direction ĥi→j of
the links and indicate the following messages [22]: hi→j ¼
ĥi→j ¼ 1 indicates “matchme,” hi→j ¼ ĥi→j ¼ −1 indicates
“do not match me,” finally, hi→j ¼ ĥi→j ¼ 0 indicates “do
what you want.” In fact, the energy E follows (see
Supplemental Material [29] for details):

E ¼ −
XN
i¼1

max
h
−1; max

k∈∂þi
ĥk→i

i
−
XN
i¼1

max
h
−1; max

k∈∂−i
hk→i

i

þ
X
hi;ji

max
h
0; hi→j þ ĥj→i

i
ð4Þ

in which, for each directed link (i, j), the cavity fields
fhi→j; ĥi→jg satisfy the following zero-temperature version
of the belief propagation (BP) equations, also known asmax-
sum (MS) equations,

hi→j ¼ −max
h
−1; max

k∈∂þinj
ĥk→i

i
; ð5aÞ

ĥi→j ¼ −max
h
−1; max

k∈∂−inj
hk→i

i
; ð5bÞ

with the assumption that the maximum over an empty set
is equal to−1. In the infinite size limit, theMS equations are
closed for cavity fields with support on f−1; 0; 1g [6,22,23].
These equations can be solved by iteration using the BP/MS
algorithm.
Sufficient condition for the full controllability of

networks.—Let us, now, show that, for any network topology,
if the in degree and the out degree of the network is greater
than two, the fraction of driver nodes is zero. First, we observe
that the configuration in which all fields are zero, i.e.,
hi→j ¼ ĥi→j ¼ 0, is an allowed solution of Eqs. (5a)–(5b)
as soon as the minimum in degree and minimum out degree
equal one. In fact, if a node has in-degree one, this linkmust be
matched, and a similar situation occurs for the nodes with
out degree one, generating a set of hard constraints incom-
patible with the configuration in which all the fields are zero,
while if the minimum in degree or out degree of the network
is greater than one, all the nodes can be matched in a variety
of ways; therefore, all the fields can be equal to zero. This
solution corresponds to a fraction of driver nodes nD ¼ 0
if the minimum in degree and the minimum out degree
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are greater than one. This solution is also stable if,
when we change a single field from zero to a value different
from zero, the perturbation does not propagate in the
network. Suppose that ĥk→i is changed, say, from 0 to 1,
meaning that the message is “match me,” then all the nodes
j ∈ ∂þi neighboring i and different from k receive a message
“do not match me.” But, if all the nodes j have more than
two incoming links, also, if the link (j, k) is not matched,
they can still send to their incoming neighbors the
message “do what you want” since there are different ways
inwhich thematchingcanbeachieved, and theydonothave to
impose on any of their other links to be matched. Therefore,
the perturbation does not propagate in the network. A similar
argument holds for a change of the field hk→i to one
which does not propagate if the out degree of the network
is greater than two. This stability argument shows that
for every tree-like network for which the BP/MS equations
are valid, if the in degree and the out degree of the network
is greater than two, then the density of driver nodes is nD ¼ 0.
Note that this a sufficient condition for the stability
of the nD ¼ 0 solution but more stringent conditions are
discussed in the following for networks with given degree
distribution.
Conditions for the full controllability of random

networks.—In the following, we focus on ensembles of
random networks with given in-degree and out-degree
distribution PinðkÞ and PoutðkÞ. In this case (see the
Supplemental Material [29]), it is possible to write the
BP/MS equations and the energy in terms of the proba-
bilities wi ∈ ½0; 1� and ŵi ∈ ½0; 1� with i ¼ 1; 2; 3 that the
cavity fields hi→j and ĥi→j are, respectively, given by
f1;−1; 0g. From the BP/MS equations of the matching
problem on random networks with given degree distribu-
tion, we found that the solution nD ¼ 0 is allowed if and
only if Pin=outð0Þ ¼ Pin=outð1Þ ¼ 0. The replica-symmetric
cavity equations are supposed to give the correct solution to
the maximum matching problem if no instabilities take
place [22,33,34]. By analyzing the stability condition of the
BP/MS equations [29], we find that the stability conditions
for this solution in an ensemble of networks with given
in-degree and out-degree sequences, are

Poutð2Þ < hkiin2
2hkðk − 1Þiin

; Pinð2Þ < hkiin2
2hkðk − 1Þiout

: ð6Þ

In particular, when the minimum in degree and the
minimum out degree of scale-free networks are both greater
than two, i.e., Pin=outð0Þ ¼ Pin=outð1Þ ¼ Pin=outð2Þ ¼ 0, the
fraction of driver nodes is zero in the thermodynamic limit,
for any choice of the degree distribution with this property.
By changing the minimum in degree and minimum out
degree of the network, the number of driver nodes can
change dramatically, independently of the tail of the degree
distribution and the level of degree heterogeneity.
In order to use the above calculation to estimate the role

of low-degree nodes on the fate of the zero-energy solution

in finite networks, we consider uncorrelated random graphs
with the following power-law degree distribution:

PinðkÞ ¼ PoutðkÞ ¼

8><
>:

Pð1Þ if k ¼ 1

Pð2Þ if k ¼ 2

Ck−γ if k ∈ ½3; K�
ð7Þ

with C a constant determined by normalization and maxi-
mum degree K¼minð ffiffiffiffi

N
p

;f½1−Pð1Þ−Pð2Þ�Ng1=ðγ−1ÞÞ for
γ > 2 and K ¼ minðN1=γ; f½1 − Pð1Þ − Pð2Þ�Ng1=ðγ−1ÞÞ
for γ ∈ ð1; 2�, that is the minimum between the structural
cutoff [35,36] of the network and the natural cutoff of the
degree distribution. These networks can be generated
numerically using the configuration model. As long as
Pð1Þ ¼ Pð2Þ ¼ 0, the density of driver nodes goes to zero
(nD → 0) for any exponent γ > 1. More generally, the
density nD of driver nodes changes dramatically as a
function of Pð1Þ and Pð2Þ as shown by the heat map in
Fig. 1 for γ ¼ 2.1; 3.1. Moreover, in Fig. 2, we plot the

FIG. 1 (color online). Heat map representing the density of
driver nodes nD as a function of the parameters Pð1Þ and Pð2Þ for
networks of N ¼ 106 nodes with degree distribution given by
Eq. (7) and γ ¼ 2.1 (left), 3.1 (right). The density nD is obtained
by numerically solving the BP/MS equations for an ensemble of
networks with given degree distribution. The region in which
Pð1Þ þ Pð2Þ > 1 is nonphysical.

FIG. 2 (color online). Phase diagram of the density of driver
nodesnD as a function of the parameters γ andPð2Þ for networks of
N ¼ 106 nodes with degree distribution given by Eq. (7) and
Pð1Þ ¼ 0. The density nD is obtained by numerically solving the
BP/MS equations for an ensemble of networks with given degree
distribution. The solid lines indicate the stability lines forN ¼ 106,
the dotted lines indicate the stability lines in the limit N → ∞.
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phase diagram for Pð1Þ ¼ 0 indicating the region where
the solution nD ¼ 0 is stable both for a finite network of
N ¼ 106 nodes (white solid line) and for N → ∞ (white
dotted line). Note that, for γ ∈ ð2; 3�, stability line con-
verges quite slowly to zero in the infinite size limit.
A confirmation of the validity of this scenario is reported

in Fig. 3 from a direct comparison of the theoretical results
in the ensemble of networkswith a givendegree distribution,
with those obtained by the BP algorithm, or by computing
explicitly the maximum matching using the Hopcroft-Karp
algorithm [32] finding very good agreement. Figure 3 also
shows that nD vanishes by decreasing Pð2Þ. From our
numerical results (reported in the Supplemental Material
[29]), in the region in which the solution nD ¼ 0 is stable
and we are far from the stability transition, both algorithms
give a zero number of driver nodes ND ¼ 0, meaning that
all the nodes are matched, and therefore, a single external
input can be used to control the network.
Improving the controllability of a network.—These

results suggest a simple and very effective way to improve
the controllability of a network, by decreasing the fraction
of nodes with in degree and out degree equal to zero, one,
and two. Starting from a network with given degree
distribution, we first add links starting from any node of
out degree equal to zero (if present in the network) and
randomly attached to any other node of the network, or
starting from any random node of the network and ending
to nodes of in degree zero. When there are no more nodes
with in degree or out degree equal to zero, we repeat the
process of random addition of links to nodes with in degree
or out degree equal to one and two. At the end of the
process, the minimum in degree of the network and
the minimum out degree is equal to three.

Figure 4(a) shows the reduction in the fraction of driver
nodes nDðΔLÞ compared to the original one nDð0Þ due to
the addition of a fraction ΔL=L0 of directed links to a
network with pure power-law degree distribution and
structural cutoff. It is clear that, by lowering the ratio of
low in-degree and low out-degree nodes, it is possible to
reach full controllability of the network. However, this can
be costly, since for a given network the number of links that
need to be added can be a significant fraction of the initial
number of links. Nevertheless, by means of this link-
addition process, the number of driver nodes decreases
steadily, and for example, in the case considered in Fig. 4,
the number of driver nodes is decreased by 50% just by
adding 12% of links. Finally, we have measured how other
properties of the network change during this procedure,
observing that the clustering coefficient does not change
significantly while the average distance decreases. Note
that this procedure can also be applied to networks with
other degree distributions as Poisson networks (see the
Supplemental Material [29]).
Conclusions.—We have shown that the structural con-

trollability of a network depends strongly on the fraction of
low in-degree and low out-degree nodes. For any uncorre-
lated directed network with given in-degree and out-degree
distribution, the minimum fraction of driver nodes is zero,
i.e., nD ¼ 0, if the in degrees and the out degrees of all
nodes are both greater than two. For the relevant class of
networks with power-law degree distribution, the number
of driver nodes can change dramatically by changing the
fraction of nodes with in degree and out degree equal to one
or two. Finally, we have proposed a strategy for improving
the structural controllability of networks by adding links to
low degree nodes. Since studying the controllability of real
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FIG. 3 (color online). Density of driver nodes nD as a function
of Pð2Þ for in-degree and out-degree distributions as in Eq. (7)
with Pð1Þ ¼ 0 and γ ¼ 2.3. The fraction of driver nodes
computed with the BP/MS algorithm on a network of N ¼
104 nodes (averaged over 50 network realizations) is compared
with the exact results obtained using the Hopcroft-Karp algorithm
for maximum matching [32] and with the theoretical expectation
for the density nD in an ensemble of random networks with the
same degree distribution.
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FIG. 4 (color online). Fraction of driver nodes nDðΔLÞ=nDð0Þ
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of the network as a function of the fraction of added links to low
degree nodes. The results are obtained from the BP/MS algo-
rithm. The initial network is a power-law network with in-degree
distribution equal to the out-degree distribution, N ¼ 104 nodes,
and power-law exponent γ ¼ 2.3. The symbol ΔL indicates the
number of added links to the network, whereas L0 indicates the
initial number of links of the network.
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networks is essential for drug design, business applications,
and studying the stability of financial markets, we believe
that our results will improve the understanding of control-
lability in such systems.
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