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Multistate genetic switches play a crucial role during embryonic development and tumorigenesis. An
archetypical example is the three-way switch regulating epithelial-hybrid-mesenchymal transitions. We
devise a special WKB-based approach to investigate white Gaussian and shot noise effects on three-way
switches, and construct an effective landscape in good quantitative agreement with stochastic simulations.
This approach allows efficient analytical or numerical calculation of the landscape contours, the optimal
path, and the state relative stability for general multicomponent multistate switches.
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One of the most challenging tasks in biological physics is
to understand the underlying principles governing cell fate
decision during embryonic development and tumorigenesis
[1]. The cellular decisions are typically regulated by coupled
genetic circuits that operate as multistate switches, i.e.,
circuits whose dynamics permits the coexistence of multiple
states [2,3], each of which corresponds to a distinct cell fate
or phenotype.
A typical example of cell decisions is the bidirectional

transitions between epithelial and mesenchymal pheno-
types (EMT and MET), which are involved in embryonic
development and tissue repair [4]. Aberrant regulation
of these transitions is a hallmark of cancer metastasis
[5]. It was proposed that the genetic network that regulates
these transitions acts as a three-way switch [6,7]. In
addition to the epithelial and mesenchymal phenotypes,
this network also allows for transitions into a hybrid
epithelial-mesenchymal phenotype [8].
Noise associated with gene expression often plays

crucial roles in cellular functions and in particular in
phenotypic stability and transitions [9,10]. Therefore, a
sound understanding of the operational principles of multi-
state switches requires assessing the effect that different
types of noise have on the transitions and on the relative
stability of the switch states. Circuit stochasticity has
gained considerable theoretical investigations in the context
of the function of genetic networks [11,12]. Of interest here
are previous attempts to apply transition rate theory, a
method commonly used to investigate various kinds of
problems in physics [13], such as protein folding [14].
Motivated by the Waddington epigenetic landscape,

many rely on the notion of an effective potential to describe
cell fate determination in the presence of noise [15]. In the
noise-free limit, the circuit dynamics can be modeled
deterministically by the chemical rate equation _x ¼ fðxÞ.
The challenge is that its deterministic dynamics is not
derived from a potential function. The dynamics can be
mapped to the overdamped dynamics of a particle driven by

a force f. In the limit that one of the processes is
considerably slower than the other degrees of freedom,
the dynamics can be reduced to a one-dimensional equa-
tion, while the effective potential can be defined as UðxÞ ¼
− R

x
0 fðx0Þ · dx0 [16]. Clearly, this definition is not valid

for general multidimensional systems (e.g., gene circuits
with two or more components). The corresponding force
field defined by multidimensional f is not necessarily
conservative; thus, the integral of f is path dependent
and a potential function cannot be defined.
A common approach is to define an effective potential

UðxÞ that captures the effect of noise to be

UðxÞ ¼ − lnPðxÞ; ð1Þ

where PðxÞ is the steady state probability for the state x in
the presence of noise. This approach captures the effects of
the noise on gene circuit dynamics since random fluctua-
tions are prevalent in modulating the circuit functions
[12,17,18]. Many studies rely on stochastic simulations,
such as the Gillespie algorithm [19], to compute the steady
state probabilities, the transition rates, and the relative
stability between different phenotypes. While stochastic
simulations can provide this information, they are slow to
converge and therefore extensively time consuming and
less efficient in investigating the effect of the circuit
architecture and dynamics in the presence of noise.
Alternatively, steady state probabilities and transition

rate properties have been computed analytically or numeri-
cally by applying the WKB approximation [20]. The
method was originally proposed to study the transition
rate theory of nonequilibrium systems [21–23], and has
been recently applied to a classical toggle switch with two
coexisting states [24–26]. In a pioneering work by Wang
et al. a similar path integral based method has been applied
to genetic switches [27]. Here we address the challenge
posed by three-way genetic switches that requires non-
trivial generalization of the current WKB-based approaches
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to generate a self-consistent landscape for systems with
multiple steady states. While the method is presented in the
context of genetic switches, it is applicable to general
nonequilibrium systems with multiple steady states.
To meet the challenge, we introduce a new analytical

approach to study the effect of white Gaussian noise and of
shot noise on the dynamics of generic multistate switches.
To simplify the presentation, we introduce the approach by
considering the specific example of a three-way switch.
The stochastic dynamics is described by a state-dependent
diffusion problem, formulated in terms of a multivariate
Fokker-Planck equation (FPE). Using the WKB method
[28], we approximate the FPE by an eikonal equation,
which is readily solved by the method of characteristics.
Moreover, we develop a new contour extension method to
construct the landscape contours, compute the optimal
path, and calculate the relative stability by integration of
the effective potential along the optimal path. We discuss
how the method can be generalized for multicomponent
multistate cases.
A classical toggle switch composed of two mutually

inhibiting transcription factors (TFs) X and Y [inset of
Fig. 1(a)] typically acts as a two-way switch [29]. A
symmetric self-activating toggle switch [inset of Fig. 1(b)]
acts as a three-way switch [6,30]. The deterministic dynam-
ics of these circuits in the absence of noise (the limit of a
large number of molecules and fast TF-DNA binding and
unbinding) are described by the rate equations for the protein
levels x and y given by [6]

_x ¼ fxðx; yÞ ¼ gxHS
xyðyÞHS

xxðxÞ − kxx;

_y ¼ fyðx; yÞ ¼ gyHS
yxðxÞHS

yyðyÞ − kyy; ð2Þ

where HS
I ðxÞ is the shifted Hill function (labeled by I)

defined as H−
I ðxÞ þ λIH

þ
I ðxÞ, H−

I ðxÞ ¼ 1=½1þ ðx=xIÞnI �,
Hþ

I ðxÞ ¼ 1 −H−
I ðxÞ. λI > 1 means activation, and λI < 1

means inhibition. For a classical toggle switch, the self-
activation terms HS

xx and HS
yy are not included (see the

Supplemental Material [31] for parameters). From Fig. 1, the
two-way switch has two stable fixed points (solid green
circles) and a saddle point (hollow green circle), and the
three-way switch has three stable fixed points and two saddle
points.
In the presence of noise originated from external signals,

the stochastic dynamics can be approximated by the
following nonlinear Langevin equations:

_x¼ fxðx;yÞþLxðx;y;tÞ; _y¼ fyðx;yÞþLyðx;y;tÞ; ð3Þ

where hLiðx; y; tÞLjðx; y; t0Þi ¼ 2εDijðx; yÞδðt − t0Þ for i,
j ∈ x, y, ε is a small scaling constant, and εD is the matrix
of effective diffusion. Here, we consider the case of white
Gaussian noise (D is a unity matrix) and the case of shot
noise (D is a diagonal matrix with Dii ∼ i).
Following Itô’s approach [33], the corresponding FPE

for the probability Pðx; yÞ in this overdamped dynamics,
also known as the Smoluchowski equation, is given by

∂P
∂t ¼ − ∂

∂x ðfxPÞ −
∂
∂y ðfyPÞ þ

∂2

∂x2 ðεDxxPÞ

þ ∂2

∂y2 ðεDyyPÞ þ
∂2

∂x∂y ð2εDxyPÞ: ð4Þ

For some other cases, in which the dynamics are not
apparently associatedwith a Langevin equation, similar FPEs
can still be derived in the limit of small noise. That includes
the case of birth-death internal noise and gene switching
noise in the limit of a large number of molecules and fast
binding and unbinding [34,35] (see the Supplemental
Material [31]). Thus, in general, the probability Pðx; y; tÞ
is the solution of a FPE with a drift term that equals the
deterministic rate fðx; yÞ, and a noise-type dependent dif-
fusion term. A typical internal noise resembles a mixture of
both white Gaussian noise and shot noise. We calculate the
steady state probability distribution Pðx; yÞ employing the
WKB approximation [20] and use it to construct the genetic
landscape according to Eq. (1).
We follow the WKB approximation method proposed by

Schuss et al. [36], and express the stationary probability
Pðx; yÞ as

Pðx; yÞ ¼ P0e−½Wðx;yÞ=ε�; ð5Þ
where P0 is a normalizing constant, and ε is the same small
variable in the FPE. From Eq. (1), the effective potential U
is proportional to W. Wðx; yÞ is the solution of the
following eikonal equation that is obtained by expanding
W to zero order in ε:

Dxxp2
x þ 2Dxypxpy þDyyp2

y þ fxpx þ fypy ¼ 0; ð6Þ

where p is an auxiliary vector representing the partial
derivatives of W: px ¼ ∂W=∂x and py ¼ ∂W=∂y. The
eikonal equation can be solved by using Cauchy’s method

FIG. 1 (color). Deterministic dynamics of multistate genetic
switches. The plots show the nullclines (navy and brown lines),
stable steady states (solid green circles), saddle points (hollow
green circles), and deterministic flow field (black arrows).
(a) Bistable toggle switch and (b) tristable self-activating toggle
switch (parameters in the Supplemental Material [31]).
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of characteristics [28], which converts the eikonal equation
and hence the original FPE into a set of parametric ordinary
differential equations (ODEs) for ½xðsÞ; yðsÞ; pxðsÞ;
pyðsÞ;WðsÞ� (with parameter s, see the Supplemental
Material [31]).
These equations define characteristic curves along which

W can be computed within the basin of attraction of each
stable state in two stages. First, the basin of attraction is
covered by a sheaf of characteristic curves beamed away
from the corresponding fixed point. Second, the value ofW
along each characteristic curve is calculated by integrating
the equation for dW=ds along the characteristic curves.
The initial conditions of the ODEs are selected from a
contour of constant W close to the fixed point, where
ðx; y; px; py;WÞ ¼ ðx0; y0; 0; 0; cÞ, and c is a constant that
could be determined later. By approximating W to a
quadratic form, the initial conditions can be solved numeri-
cally by the generalized eigenvalue method [37] described
in the Supplemental Material [31].
The computed characteristic curves, along which W

values monotonically increase when the parameter s
increases, are shown in Fig. 2. The characteristics from
a stable fixed point should in principle not cross the
separatrix. However, we observe some violations for
the regions with high W values, presumably because of
the necessity for more than zero order approximation in
Eq. (6). Sometimes, dramatically different characteristics
can be obtained by slightly changing the initial conditions
along the initial contour. We therefore devise an adaptive
method (see the Supplemental Material [31]) to sample the
initial conditions in a special way so that the characteristic
curves cover the whole phase plane as uniformly as
possible. The regimes that are not covered by the character-
istics (Fig. 2) require more refined sampling and higher
order approximation in the locations of high W. Of
particular interest is the characteristic curve that connects

the stable fixed point with the saddle point and is associated
with the optimal path [24]. This characteristic curve, which
is calculated by a new method we developed (see below),
enables us to calculate ΔW, the difference between the
value of W at the saddle point and at the stable fixed point,
and hence the relative stability of the different states.
Construction of the global effective potential requires

calculating the values of W for the different stable fixed
points, i.e., the constants c defined above. This is done by
first defining the level ofW to be zero for a fixed point, and
then, for each pair of saddle point and stable point,
calculating the integral of dW=ds along the optimal path.
Figure 2 shows the computed characteristic curves and W
for both the two-way and the three-way switches. This
figure illustrates the efficiency of the characteristic curves
in mapping the effective landscape.
In principle, once the sheaf of characteristic curves is

mapped, the contours of constant W are well defined and
can be constructed. Yet, doing so requires a special method
to handle the ultrasensitivity of the characteristic curves
to the initial conditions. Therefore, we devise a contour
extension (CE) method, to efficiently compute the land-
scape contours for a two-dimensional system. The idea is to
utilize the method of characteristics in a special iterative
way. At each iteration, a new contour is calculated from the
previous contours by interpolating the contour points from
the characteristic curves initiated from points along the
previous contour. More specifically, for any point (x0, y0,
p0
x, p0

y,W0), we have 0≡ dW ¼ p0
xdxþ p0

ydy along theW0
contour. So the slope of the contour at this point is
dy=dx ¼ −p0

x=p0
y, and the tangent line is y ¼ y0−

ðx − x0Þp0
x=p0

y: For any two adjacent points A and B on
the same contour [Fig. 3(a)], we construct the contour line
between A and B by interpolation. First, we find an
auxiliary point C, which is the intersection of the contour
tangent lines that go through the points A and B. Second,
the contour line can be approximated by the quadratic
Bezier curve from A, B, and C. Any pointD on the contour
is given by

DðαÞ ¼ ð1 − αÞ2Aþ 2ð1 − αÞαCþ α2B; ð7Þ

whereA,B, andC are the (x, y) vectors for points A, B, and
C, respectively, and α is a parameter from 0 to 1.
By using this interpolation technique, we construct the

landscape contours by the following iterative steps. First,
several characteristics curves are computed starting from
the points on the initial contour until theW values exceed a
certain threshold value or the contour curvature between
any two adjacent points is too large. Here, the contour
curvature can be approximated by the difference between
the contour slopes (in angle) of the two contour points.
Second, the contours are constructed from the contour
points by the above interpolation method. Third, the
contour points are resampled along the whole contour
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FIG. 2 (color). Construction of effective landscape by the
WKB-based approach. Characteristic curves (solid lines, colors
representing the W values) are generated by the method of
characteristics, starting from the initial contours around each
stable fixed point. Some white spaces are not covered by the
curves because of under sampling. (a) Two-way switch with
white Gaussian noise and (b) three-way switch with shot noise.
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according to the point density and the contour curvature
[for more details, see Fig. 3(a) and the Supplemental
Material [31]].
We also introduce a new method to compute the optimal

path by the CE and a special iterative bisection method
[Fig. 3(b)]. First, we select two points on the initial contour
on either side of the crossing of the optimal path and the
contour. Second, we advance the two points for a short
distance along the two characteristic curves that pass
through these points, while computing the W values and
making sure to advance the two points such that the W
values are kept equal. Third, once the two points are far
away, a contour segment is constructed between the two
new points and the middle point (α ¼ 0.5) is calculated
from Eq. (7). Fourth, the middle point replaces one of the
previous two contour points, so that the optimal path is still
between the two characteristic curves starting from these
two new points. The bisection process is repeated until the
two points reach to the proximity of the saddle points.
Figure 4 shows an example of the landscape contours,

optimal path, and relative stability (in terms of an effective
potential along the optimal path) for the three-way switch
in the presence of white Gaussian and shot noise. From the
figure, the white Gaussian noise can stabilize the inter-
mediate state while the shot noise destabilizes it, presum-
ably because the shot noise level in the intermediate state is
relatively higher than that in the other two states. Since the
gradient of W for any point can be calculated from the
contours, we also check the steepest descent path of W,
which starts from a saddle point and ends at a stable point
(red dotted line). From Fig. 4, the steepest descent path is
different from the optimal path, suggesting that the

probability flux also plays an important role in the non-
equilibrium dynamics, and the transition path is irreversible
[27]. Quantitative comparison with the results from sto-
chastic simulations reveals an excellent agreement between
the two methods [Figs. 4(c) and 4(d) and Sec. 8 of the
Supplemental Material [31]], except for the middle basin
for the three-way switch with shot noise [Fig. 4(d)], where
the shallow basin is undersampled because of large noise.
As shown in detail in the Supplemental Material [31], some
deviations of the stochastic simulations from the analytical
or computational results reflect the ineffectiveness of the
stochastic simulations in constructing an accurate land-
scape due to the need for consistently large sampling of the
individual basins. Therefore, the deviations manifest the
advantage of having an analytical or computational method
for the landscape construction. According to the simula-
tions (Fig. S7 [31]), the linear relationship W ∼ logP is
valid for a wide range of ε values, while larger deviations
were observed for larger ε and W values (Figs. S5 and S6
[31]). Such deviations at the states with highW values may
have a negligible effect, as they are usually far away from
the steady state conditions.

FIG. 3 (color). Illustration of the CE method for computing
landscape contours and optimal paths. (a) The interpolation
method to construct contour lines. Starting from points on
contour 1, characteristic curves are generated until they reach
contour 2. The contour line between two adjacent contour points
A and B can be interpolated by the quadratic Bezier curves
constructed from the points A, B, and C, where the point C is the
intersection of the two contour slope lines through A and B. For
the next iteration, the initial conditions are selected from points
on contour 2. (b) The optimal path for the two-way switch. The
plot shows the nullclines (navy and brown dotted lines) and the
optimal path connecting the stable point and the saddle point. Our
numerical methods generate two sets of line segments of the
characteristic curves, shown in blue and red solid lines (which
almost overlap, see inset).

FIG. 4 (color). Comparison of the landscape contours with
stochastic simulations for the three-way switch. Left panels:
Gaussian noise; right panels: shot noise. Panels (a) and (b) show
the CE contours (colors representW values), optimal paths (black
solid lines), and steepest descent paths (dotted red lines). The
insets show W along the optimal path. Panels (c) and (d) show
− logðPÞ from Langevin simulations (colors selected to better
match the W values; see the Supplemental Material [31]). The
insets show the mean (blue dots) and standard deviations (error
bars) of − logðPÞ along each CE contour (e.g., contours illus-
trated as brown dashed lines, see Sec. 8 of the Supplemental
Material [31]). Linear fitting was performed on the data points for
the contours within the top left and the bottom right basins. The
slope of the linear fitting coincides with ε−1, as expected from the
theory. In panel (d), some contour lines are shifted and the middle
basin is undersampled because of large shot noise.
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To conclude, the method presented here can be readily
extended to systems with more than two components. For
example, in the study of a micro-RNA-based circuit, the
system has at least three components, including micro-RNA,
mRNA, and protein molecules [6,7]. The WKB-based
method can be extended for multidimensional systems
(see the Supplemental Material [31]). However, since sam-
pling the initial conditions requires extensive computations,
an efficient approachwill be to first define one or two reaction
coordinates, and then to apply the construction method. One
possible solution would be the method in which the slow
variables are first obtained from simulations by a diffusion
map [38,39], and the corresponding FPE is established by the
equation-free approach [40]. Somemean field approximation
methods [41–44] also have recently been proposed to deal
with multidimensional cases. It would be also interesting to
compare the different approaches on a large-scale network.
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