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We apply macroscopic fluctuation theory to study the diffusion of a tracer in a one-dimensional
interacting particle system with excluded mutual passage, known as single-file diffusion. In the case of
Brownian point particles with hard-core repulsion, we derive the cumulant generating function of the tracer
position and its large deviation function. In the general case of arbitrary interparticle interactions, we
express the variance of the tracer position in terms of the collective transport properties, viz., the diffusion
coefficient and the mobility. Our analysis applies both for fluctuating (annealed) and fixed (quenched)

initial configurations.

DOI: 10.1103/PhysRevLett.113.078101

Single-file diffusion refers to the motion of interacting
diffusing particles in quasi-one-dimensional channels
which are so narrow that particles cannot overtake each
other and hence the order is preserved (see Fig. 1). Since its
introduction more than 50 years ago to model ion transport
through cell membranes [1], single-file diffusion has been
observed in a wide variety of systems; e.g., it describes
diffusion of large molecules in zeolites [2,3], transport in
narrow pores or in superionic conductors [4,5], and the
sliding of proteins along DNA [6].

The key feature of single-file diffusion is that a typical
displacement of a tracer particle scales as #'/4 rather than
V/t as in normal diffusion. This subdiffusive scaling has
been demonstrated in a number of experimental realizations
[7-12]. Theoretical analysis leads to a challenging many-
body problem [13,14] because the motion of particles is
strongly correlated. The subdiffusive behavior has been
explained heuristically for general interactions [15,16].
Exact results have been mostly established in the simplest
case of particles with hard-core repulsion and no other
interactions [17-21].

Finer statistical properties of the tracer position, such as
higher cumulants or the probability distribution of rare
excursions, require more advanced techniques, and they
are the main subject of this Letter. Rare events are encoded
by large deviation functions [22] that play a prominent role
in contemporary developments of statistical physics [23].
Large deviation functions have been computed in a very few
cases [21,24-26] and their exact determination in interacting
many-particle systems is a major theoretical challenge [27].
In single-file systems, the number of particles is usually not
too large, and hence large fluctuations can be observable.
Recent advances in experimental realizations of single-file
systems [7-12] open the possibility of probing higher
cumulants.

The aim of this Letter is to present a systematic approach
for calculating the cumulant generating function of the
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tracer position in single-file diffusion. Our analysis is based
on macroscopic fluctuation theory, a recently developed
framework describing dynamical fluctuations in driven
diffusive systems (see [28], and references therein).
Specifically, we solve the governing equations of macro-
scopic fluctuation theory in the case of Brownian point
particles with hard-core exclusion. This allows us to obtain
the cumulants of tracer position and, by a Legendre
transform, the large deviation function.

Macroscopic fluctuation theory also provides a simple
explanation of the long memory effects found in single-file
diffusion, in which initial conditions continue to affect the
position of the tracer, e.g., its variance, even in the long time
limit [29,30]. The statistical properties of the tracer position
are not the same if the initial state is fluctuating or fixed—
this situation is akin to annealed versus quenched averaging
in disordered systems [25]. For general interparticle inter-
actions, we derive an explicit formula for the variance of the
tracer position in terms of transport coefficients and obtain
new results for the exclusion process.

We start by formulating the problem of tracer diffusion in
terms of macroscopic fluctuation theory, or equivalently
fluctuating hydrodynamics. The fluctuating density field
p(x, 1) satisfies the Langevin equation [13]
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FIG. 1 (color online). Single-file diffusion of Brownian point
particles: individual trajectories do not cross each other.
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where 7(x, t) is a white noise with zero mean and with
variance (n(x, t)n(x’, 7)) = 6(x —x')6(r — ). The diffu-
sion coefficient D(p) and the mobility o(p) encapsulate
the transport characteristics of the diffusive many-particle
system, they can be expressed in terms of integrated particle
current [31]. All the relevant microscopic details of
interparticle interactions are thus embodied, at the macro-
scopic scale, in these two coefficients.

The position X7 of the tracer particle at time 7" can be
related to the fluctuating density field p(x, f) by using the
single-filing constraint which implies that the total number
of particles to the right of the tracer does not change with
time. Setting the initial tracer position at the origin, we
obtain

X oo
[ e mas= [Ty = plxoax. (@
This relation defines the tracer’s position X7 as a functional
of the macroscopic density field p(x, ). Variations of X7
smaller than the coarse-grained scale are ignored: their
contributions are expected to be subdominant in the limit of
a large time 7. The statistics of X is characterized by the
cumulant generating function

p(4) = In [(exp(2X7))], (3)

where A is a Lagrange multiplier and the angular brackets
denote an ensemble average. We shall calculate this
generating function by using techniques developed by
Bertini er al. [28,32], see also [25], to derive the large
deviation function of the density profile. Starting from (1),
the average in (3) can be expressed as a path integral

(1) = / Dip. ple=S) 4

where the action, obtained via the Martin-Siggia-Rose
formalism [33,34], is given by

Slp.p| = —AXy + Flp(x,0)] + Asz /_°° dx

1
< 00 = 300 0,02 + D)0 ()
Here, F[p(x,0)] = —In(Prob[p(x,0)]) and p(x,t) is the
conjugate response field. We employ two types of initial
conditions, annealed and quenched. In the annealed case,
the large deviation function F[p(x, 0)] corresponding to the
observing of the density profile p(x,0) can be found from
the fluctuation dissipation theorem which is satisfied at
equilibrium. This theorem implies [13,27,35] that f(r), the
free energy density of the equilibrium system at density r,
satisfies f”(r) = 2D(r)/o(r). From this one finds [25,27]

Flp(x.0)) = |

o o0 2D(r)
oodx/p dr o) [p(x,0) —r], (6)

where p is the uniform average density at the initial
equilibrium state. In the quenched case, the initial density
is fixed, p(x,0) = p, and F[p(x,0)] = 0.

At large times, the integral in (4) is dominated by the
path minimizing the action (5). If (¢, p) denote the
functions (p,p) for the optimal action paths, variational
calculus yields two coupled partial differential equations
for these optimal paths

919 — 0:[D(q)0xq] = —0x[0(q)0:p]. (7a)

Oup+ D(@)dp = 30 (@)(@,p)%  (7b)

The boundary conditions are also found by minimizing the
action and they depend on the initial state [36]. In the
annealed case, the boundary conditions read

p(x,T)=BO(x-Y) with B=1/q(Y,T), (8)

2D(r)
o(r) -

Here, 0(x) is the Heaviside step function, Y is the value of
X7 in Eq. (2) when the density profile p(x, ¢) is taken to be
the optimal profile ¢(x,7). Note that Y representing the
tracer position for the optimal path (at a given value of 1) is
a deterministic quantity.

In the quenched case, the initial configuration is fixed
and therefore g(x,0) = p. The “boundary” condition for
p(x,T) is the same as in (8).

In the long time limit, the cumulant generating function
(3) is determined by the minimal action S[g, p]. Using
Egs. (7a) and (7b) we obtain

p(x,0) = BO(x) + / 0, 9)

u) = av = rig - ["ar [ 2D (o, (10)

Thus, the problem of determining the cumulant generating
function of the tracer position has been reduced to solving
partial differential equations for g(x,¢) and p(x,r) with
suitable boundary conditions.

Two important properties of the single-file diffusion
follow from the formal solution (10). First, since (4) is an
even function of 4, all odd cumulants of the tracer position
vanish. Second, it can be shown that x(2) is proportional to
VT; thus, all even cumulants scale as /7. If the tracer
position X is rescaled by T'/4, all cumulants higher than
the second vanish when T — oo. This leads to the well-
known result [20] that the tracer position is asymptotically
Gaussian.
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To determine u(4) we need to solve Egs. (7a) and (7b).
This is impossible for arbitrary o(q) and D(g), but
for Brownian particles with hard-core repulsion, where
o(q) = 2q and D(g) = 1, an exact solution can be found.
In the annealed case, Eqs. (7a) and (7b) for Brownian
particles become

atq - aqu = _ax[zqaxp]’ (lla)

8tp + 8}5}5[) = _(axp)z' (11b)
The boundary conditions are (8) and (9), the latter one
simplifies to

q(x,0) = pexp [p(x,0) — BO(x)]

in the case of Brownian particles.

We treat B and Y as parameters to be determined self-
consistently. The canonical Cole-Hopf transformation from
(q,p) to Q =ge™” and P = e” reduces the nonlinear
equations (11a) and (11b) to noncoupled linear equations
[25,37,38], a diffusion equation for Q and an antidiffusion
equation for P. Solving these equations we obtain explicit
expressions for p(x, ) and ¢(x,t) [36].

From this solution, the generating function u(4) is
obtained in a parametric form as

) = [1 01 5] v (12)

where Y and B are self-consistently related to 4 by

A=p(l—eB) [1 —I—%(eB - l)erfc(n)], (13)

2n

B =1+
7~ 2e " — perfe(n)

, (14)

where we used the shorthand notation 7 = Y/+/4T.

The cumulants of the tracer position can be extracted
from this parametric solution by expanding u(4) in powers
of A. The first three nonvanishing cumulants are

2 _ 2 a
<XT>C _p\/J_T\/T’ (15 )
i 6(4—r)
<XT>C - (,0\/5)3 \/T’ (15b)
oo 30(68 — 307 + 372) .
<XT>C - (p\/]‘[)S \/T’ (15 )

in the large time limit. The expression (15a) for the variance
matches the well-known result [13,17,29]. The exact
solution (12)—(14), which encapsulates (15a)—(15¢) and
all higher cumulants, is one of our main results.

The large deviation function of the tracer position,
defined, in the limit 7' — oo, via

Prob <% = 5) ~exp[-VT¢(&)],

is the Legendre transform of u(4), given by the parametric
solution (12)—(14). This large deviation function ¢ (&) can
be expressed as

$(&) = p[Val(d) - Va(=d)I’, (16)

with a(&) = fg/"z dzerfc(z). The large deviation function
¢(&) is plotted on Fig. 2. The asymptotic formula
P (&) = p|&| is formally valid when |£| — oo, but it actually
provides an excellent approximation everywhere apart from
small £. Expression (16) matches an exact microscopic
calculation [24,39].

We carried out a similar analysis for a quenched initial
condition. Here, we cite a few concrete results. The first
two even cumulants read

3, = Y2 T,

N (17a)
(X4), = /)23_[\/27_1 Barctan (ﬁ) - 1] JT.  (17b)

These cumulants are different from the annealed case. In
particular, the variance is \/2 times smaller, in agreement
with previous findings [29,35,40]. An asymptotic analysis
yields ¢(&) = p|€|3/12 when |£] — co. This asymptotic
behavior can also be extracted from the knowledge of
extreme current fluctuations [41].

To test our predictions, we performed Monte Carlo
simulations of single-file diffusion of Brownian point
particles. In most simulations, we considered 2001 particles
on an infinite line which are initially distributed on the
interval [—100, 100]. In the annealed case, the particles
were distributed randomly; in the quenched case, they were
uniformly spaced. The central particle is the tracer. The
cumulants of the tracer position at different times,

10

8

6

1¢3)

4

2

0
-10 -5 0 5 10

FIG. 2 (color online). The large deviation function of tracer
position in the case of Brownian point particles in the annealed
setting with density p = 1.
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FIG. 3 (color online). Simulation results for the second cumu-
lant (main plots) and the fourth cumulant (insets). Shown are
results for Brownian point particles with average density p = 10
in (a) annealed and (b) quenched settings. The solid lines denote
corresponding theoretical results; the variance was already
computed in [29].

determined by averaging over 10® samples are shown in
Fig. 3. At small times (comparable to the mean collision
time), the tracer diffusion is normal. At very long times, the
diffusion again becomes normal since there is only a finite
number of particles in our simulations. The crossover time
to normal diffusion increases as N> with the number of
particles. At intermediate times, the motion is subdiffusive
and the cumulants scale as v/7. In this range the data are in
excellent agreement with theoretical predictions (15a),
(15b) and (17a), (17b).

For arbitrary ¢(p) and D(p), the governing equations (7a)
and (7b) are intractable, so one has to resort to numerical
methods [35,42]. For small values of A, however, a
perturbative expansion of p(x,7) and g(x,t) with respect
to A can be performed [35]. This is feasible because for
A =0 the solution is p(x,7) = 0 and ¢(x, 1) = p, for both
types of initial conditions. Equations (7a) and (7b) give rise
to a hierarchy of diffusion equations with source terms. For
example, to the linear order in A, we have

8tpl + D(p)axxpl = O’
arql - D(p)axXQI = _G(p)axxpl’

where p; and ¢, are the first order terms in the expansions
of p and ¢, respectively. Solving the above equations and
noting that (X2).. is a function of the p; and ¢,, we obtain a
general formula for the variance [36]

_olp) | T

< pvz\ Dlp) 18)

(X7)

in the annealed case. In the quenched case, the variance is
given by the same expression but with an additional /2
term in the denominator. We emphasize that Eq. (18)
applies to general single-file systems, ranging from hard
rods [15] to colloidal suspensions [16], and also to lattice
gases [20]. As an example of the latter, consider the
symmetric simple exclusion process (SEP). For this lattice
gas, the transport coefficients are D(p) =1 and o(p) =
2p(1 — p) (we measure length in the unit of lattice spacing,
s0 0 < p < 1 due to the exclusion condition), so Eq. (18)
yields (X%), = 2(1 — p)\/T/p+/7, in agreement with well-
known results [20]. The result for colloidal suspension
derived in [16] is recovered by inserting in (18) the
fluctuation dissipation relation o(p) = 2S(p)D(p), where
S(p) is the structure factor [13].

Finding higher cumulants from the perturbative expan-
sion leads to tedious calculations. For the SEP, we have
computed the fourth cumulant

a2 1—pa
<XT>L'_\/77[ p3 (,0)\/7,
12

alp) =1-[4=(8-3v2)l(1-p) +—(1-p)’

in the annealed case. For small values of p, the above results
reduce to (15b). The complete calculation of the tracer’s
large deviation function for the SEP remains a very
challenging open problem.

To conclude, we analyzed single-file diffusion employing
the macroscopic fluctuation theory. For Brownian point
particles with hard-core exclusion, we calculated the full
statistics of tracer’s position, viz., we derived an exact
parametric representation for the cumulant generating func-
tion. We extracted explicit formulas for the first few cumu-
lants and obtained large deviation functions. We also derived
the subdiffusive scaling of the cumulants and the closed
expression (18) for the variance, valid for general single-file
processes. All our results have been derived in the equilib-
rium situation (homogeneous initial conditions). It seems
possible to extend our approach to nonequilibrium settings.
Another interesting direction is to analyze a tracer in an
external potential [26,43—45] and biased diffusion [46,47].
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