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We investigate decoherence of an electron in graphene caused by electron-flexural phonon interaction.
We find out that flexural phonons can produce a dephasing rate comparable to the electron-electron one.
The problem appears to be quite special because there is a large interval of temperature where the dephasing
induced by phonons cannot be obtained using the golden rule. We evaluate this rate for a wide range of
density (n) and temperature (T) and determine several asymptotic regions with the temperature dependence
crossing over from τ−1ϕ ∼ T2 to τ−1ϕ ∼ T when temperature increases. We also find τ−1ϕ to be a nonmonotonic
function of n. These distinctive features of the new contribution can provide an effective way to identify
flexural phonons in graphene through the electronic transport by measuring the weak-localization
corrections in magnetoresistance.
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Introduction.—The transport properties of graphene
have attracted much attention [1] since the first discovery
of this fascinating material [2]. It is promising for various
applications due to its high charge mobility and unique heat
conductivity. Theoretically, it was realized long ago [3–5]
that these transport properties of free-standing (suspended)
graphene are strongly influenced by flexural (out-of-plane)
vibrational modes that deform the graphene sheet. From
the experimental point of view, the effect of flexural
phonons (FPs) was clearly observed in heat transport
[6,7]. However, it is a more challenging task to identify
the effect of flexural phonons in electronic transport [8,9].
This is because the contribution of electron-phonon inter-
actions to momentum relaxation remains small even at high
temperatures, with the main source of the relaxation being
elastic impurities [10].
The dephasing rate τ−1ϕ , on the other hand, is a more

suitable quantity for studying FPs, since static impurities do
not cause dephasing. Usually, electron-electron interactions
[11–15] are considered the primary mechanism for dephas-
ing. In this Letter, we discuss dephasing caused by the
electron-flexural phonon (el-FP) interaction in graphene. It
is the softness of the flexural mode and the coupling of an
electron to two FPs simultaneously (see Fig. 1 for illus-
tration) that make the contribution of FPs to τ−1ϕ significant
in a suspended sample, and at large enough densities
comparable with the one caused by the electron-electron
interaction. Because of the quadratic spectrum of FPs,
ωk ¼ αk2, they are much more populated as compared with
in-plane phonons. In addition, the coupling to two FPs
considerably increases the phase space available for inelas-
tic processes as compared to the interaction with a single

phonon. The point is that in graphene the Fermi momentum
kF is relatively small. As a result, the interaction of a
single phonon with electrons is determined by the Bloch-
Grüneisen temperature, TBG ∼ ω2kF , rather than the temper-
ature, when T ≫ TBG [16]. In such a case, one needs to
exploit other scattering mechanisms to overcome the
limitations induced by the smallness of kF [17]. In the
case of el-FP interaction, coupling to two phonons radically
changes the situation. Now only the transferred momentum
should be small, while individually a FP may have a
momentum much larger than kF, up to the thermal
momentum qT .
Still, as we shall demonstrate, the problem of dephasing

due to the el-FP interaction appears to be quite special,
because the softness of FPs, i.e., the unique smallness of
TBG, leads to the existence of a temperature range where
dephasing rate cannot be obtained using the golden rule
(GR). Rather, both the self-energy and the vertex processes

FIG. 1. On the left: Scheme of the el-FP interaction process,
where the solid line represents an electron, and the wavy lines
represent FPs. On the right: FPs can have momenta p, q much
larger than the transferred momentum Q. Under the conditions
discussed in the Letter, the scattering process is considered as
semielastic.
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[18] should be treated simultaneously. This results in a
transition from τ−1ϕ ∼ T2 to T with increasing temperature
for the dephasing rate induced by FPs.
The electron-flexural phonon interaction.—Lattice

dynamics of the single-layer graphene can be described
in terms of the displacement vector u ¼ ðux; uy; hÞ [19].
Here ux;y describe the in-plane modes, while the out-of-
plane displacement h describes the flexural mode. The
displacement vector leads to a nonlinear strain tensor
uij ¼ 1

2
ð∂iuj þ ∂jui þ ∂ih∂jhÞ, where ði; jÞ ¼ ðx; yÞ are

spatial indices. The lattice modes interact with electrons
through emergent scalar and vector potential fields [20,21]:

φ ¼ g1ðuxx þ uyyÞ;
Aα ¼ sαg2=vFðuxx − uyy;−2uxyÞ; ð1Þ

where g1 ¼ 30 eV, g2 ¼ 7.5 eV [9], and vF is the Fermi
velocity. Index α ¼ K, K0 describes two valleys of the
conducting electron band, and factor sK=K

0 ¼ �1 reflects
the fact that the emergent vector potential Aα respects the
time reversal symmetry.
Thermal fluctuations of the lattice produce variations in

the potentials. Averaging over lattice vibrations one finds
the correlation functions of the potentials as

hφðQ;ΩÞφð−Q;−ΩÞi ¼ ϕðQ;ΩÞ;
hAα

i ðQ;ΩÞAβ
j ð−Q;−ΩÞi ¼ sαsβAijðQ;ΩÞ: ð2Þ

To proceed, we introduce the correlation function for FP

hhðk;ωÞhð−k;−ωÞi≡HðkÞ2πδðω − ωkÞ; ð3Þ
where HðkÞ ¼ ðnðωkÞ=ρωkÞ. In this equation, nðωÞ is the
Planck distribution function and ρ is the mass density of
the graphene sheet. One can propose the following form
of the spectrum of the flexural phonon:

ωk ¼ αk2ΘðkÞ; ΘðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z−1ðqc=kÞη

q
; ð4Þ

whereΘðkÞ describes a transition from the bare spectrum at
high momentum to the renormalized spectrum ∼k2−η=2 in
the low momentum limit. At k < qcðTÞ ¼ ð ffiffiffiffiffiffiffiffiffi

TΔc
p

=vFÞ the
quadratic spectrum for the flexural mode ceases to work
due to anharmonicity. Here Δc ≈ 18.7 eV [5] reflects the
energy scale of anharmonicity. The anharmonicity is related
to the h4 vertex, arising as a result of integrating out fast u
modes, which are coupled to the h mode [22]. Below we
will exploit the value Z ∼ 2, and take η ≈ 0.8 from the
numerical solution of the self-consistent screening approxi-
mation theory [23,24].
We consider graphene away from the Dirac point at

chemical potential μ ≫ T. Besides kF, the relevant momen-
tum scales in the problem are thermal momentum qT ¼ffiffiffiffiffiffiffiffiffi
T=α

p
≈ 0.05

ffiffiffiffiffiffiffiffiffiffi
T½K�p

=Å and qcðTÞ ≈ 0.01
ffiffiffiffiffiffiffiffiffiffi
T½K�p

=Å,

which signals the transition to the renormalized FP spec-
trum. From now on, we will concentrate on the realistic
situation from the experimental viewpoint: kF ≪ qT , i.e.,
T ≫ TBG. The Bloch-Grüneisen temperature TBG ¼
ω2kF ≈ 0.4Θð2kFÞ nK, where n is the electronic density
measured in units of 1012 cm−2. Note TBG is extraordi-
narily small for all relevant densities. As we have already
emphasized, see Fig. 1, the momentum transfer in the el-FP
interaction is limited by 2kF. Nevertheless, the extended
structure of the correlation functions ϕðQ;ΩÞ and
AijðQ;ΩÞ enables electrons to have energy transfer
exceeding the phonon energy ω2kF.
The main tool to probe electronic coherence is mag-

netoresistance [25], which gives a direct access to the weak-
localization corrections to conductivity, controlled by the
dephasing rate τ−1ϕ . The weak-localization correction to
conductivity in graphene can be written as [26,27]

Δσ ¼ −
2e2D
π

X
l

Z
dtClð−t=2; t=2Þ; ð5Þ

where l sums over four Cooperon channels relevant for the
magnetoresistance. Physically, Clð−t=2; t=2Þ represents
the interference of a pair of time reversed trajectories in
the channel l that start at −t=2 and return to the initial point
at t=2. More generally, the Cooperon matrix Cl1l2

s1s2 is labeled
by two isospin numbers s1;2 and two pseudospin numbers
l1;2. This matrix is diagonal in the pseudospin space even
in the presence of interactions that preserve sublattice
and valley indices. The Cooperon channels relevant for
magnetoresistance are the isospin singlets, Cl ≡ Cll

00

ðl ¼ 0; x; y; zÞ, that do not have gaps comparable with
τ−1, the elastic scattering rate due to impurities. Therefore,
we restrict ourselves to this subspace.
To include el-FP interaction into the Cooperon, one can

write down a Bethe-Salpeter equation for a particular
Cooperon channel Cl; see Fig. 2. In the following we will
not solve the equation exactly, but instead, we will estimate
the upper bound of the Cooperon decay rate [28,29]. We
start by writing down an ansatz that reads as [18]

Clðt1; t2Þ ¼ Cl
0ðt1 − t2Þe−Flðt1;t2Þ: ð6Þ

Here Cl
0ðtÞ is the diffusion propagator describing the bare

Cooperon, and Flðt1; t2Þ is a decay function characterizing
the effect of the el-FP interaction [30].
Dephasing due to scalar potential fluctuations.—For the

scalar potential correlation function one obtains

ϕðQ;ΩÞ ¼ 1

8
g21ðQÞ

Z
ðd2pÞðd2qÞ½p · q�2

×HðpÞHðqÞδp;qðΩ;QÞ; ð7Þ

where δp;qðΩ;QÞ≡P
�ð2πÞ3δðΩ�ωp�ωqÞ×δðQ−p−qÞ,

and ωp;q are given by Eq. (4). Here summation includes
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four different processes of emission or absorption of two
FPs by an electron. The screened coupling constant
g1ðQÞ ¼ g1ðQ=Qþ ϰÞ, where ϰ ¼ geNkF, N ¼ 4 is the
spin-valley degeneracy in graphene, and ge ∼ 1 describes
the renormalized Coulomb interaction [33]. Since each
time an electron is coupled to two flexural phonons, ϕ
describes a phonon loop and, therefore, in the momentum-
frequency domain ϕðQ;ΩÞ has an extended support rather
than a δ-function peak. As a result, the decay function for
the scalar potential FϕðtÞ (which is the same for all
channels) can be expressed as a convolution of the three
factors [30]: (i) the correlation function ϕðQ;ΩÞ, (ii) func-
tion BϕðQÞ, describing the ballistic electron’s motion, and
(iii) factor CϕðΩ; tÞ, reflecting the relation between the self-
energy and vertex diagrams:

FϕðtÞ ¼ t
Z

ðdQÞðdΩÞϕðQ;ΩÞBϕðQÞCϕðΩ; tÞ: ð8Þ

Here,

BϕðQÞ ¼ 2

vFQ
ð1 − ðQ=2kFÞ2Þ1=2θð2kF −QÞ; ð9Þ

where the Heaviside theta function θð2kF −QÞ restricts
momentum that can be exchanged between FPs and
electrons. The factor CϕðΩ; tÞ is equal to

CϕðΩ; tÞ ¼ 1 −
sinΩt
Ωt

; ð10Þ

and it describes the balance between the self-energy and
vertex diagrams on Fig. 2. Cϕ is sensitive to the dynamic
aspect of the scattering event and, because of this, alters the
temperature dependence of τ−1ϕ .

The dephasing rate τ−1ϕ is defined according to
FϕðτϕÞ ¼ 1. The decay function can be most conveniently
expressed as

FϕðtÞ ¼ c2ϕtTfðT ; ξÞT
μ
; ð11Þ

where cϕ ¼ ðg1=ρα2=2πgeNÞ ∼ 1.2 is a dimensionless
coupling constant and f is a dimensionless function of
two parameters: T ¼ αk2Ft and ξ ¼ Z−1=ηqc=kF [30].
Parameter ξ originates from the renormalization of the
FP spectrum described by Θ in Eq. (4); ΘðkFÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξη

p
.

At small T the function f is linear in T , and it saturates
at T ≫ 1.
The results are illustrated with the help of Fig. 3, where

regions I, II, and III with a different dephasing rate behavior
are indicated in the ðT − μÞ plane. The regions are divided
in accord with the importance of the renormalized spectrum
of the FP and the relative contributions of the self-energy
and vertex diagrams. In region I, which is on the left of the
black line (i.e., at small densities), the characteristic
momenta of p and q in Eq. (7) do not exceed qc.
Therefore, the renormalization of the FP spectrum is
important, and ωq ∼ q2−η=2 should be used [34]. In region
II, since the characteristic momenta of the FPs are larger
than qc, it suffices to use the quadratic spectrum for FPs. In
region III, which is in the bottom part below the blue line,
the dephasing time is long and only the self-energy diagram
is important. Hence, the factor Cϕ reduces to 1, and the
dephasing rate coincides with the out-scattering rate τ−1out
obtained from the golden rule [5]. (In this calculation, qc
just provides an infrared cutoff.) Above the blue line, in
regions I and II, both the self-energy and vertical diagrams

FIG. 3 (color online). Phase diagram of the dephasing rate due
to FPs with scalar coupling. The blue and black lines divide the
whole ðT − μÞ plane into three regions; see the text for explan-
ations. The blue line coincides with the maximum of the
dephasing rate as a function of chemical potential at a fixed
temperature; see Fig. (4). The red dashed line representing a
fragment of ξ ¼ 1 is shown here for orientation. The inset is a
zoom in of the intersection area of the blue and black lines plotted
as a function of the electronic density.

(a)

(b)

FIG. 2. Diagrammatic representation of (a) the self-energy and
(b) the vertex FP contribution to the Cooperon; see also Fig. 2(c)
in [30].
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are relevant, and the factor CϕðtÞ is important; see also [35].
Because of the two-phonon structure of the correlation
function of the FP pairs participating in the inelastic
process, the influence of this factor on the dephasing rate
is rather nontrivial, so that one cannot expand CϕðtÞ.
In Fig. 3, the blue and black lines have been found by

matching the asymptotic behavior [30] of the dephasing
rates deep in regions I, II, and III. We introduce ðμ0; T0Þ the
values of the crossing point of the blue and black lines as
characteristic scales: μ0 ∼ ðγ=c2ϕÞΔc and T0 ∼ ðγ=c2ϕÞμ0.
Here, we have introduced γ ¼ ðαΔc=v2FÞ ∼ 0.02, which
is a parameter describing the adiabaticity of the el-FP
interaction. Under a given choice of parameters, it can be
found numerically that μ0 ≈ 0.02 eV and T0 ≈ 0.6 K. The
dephasing rate in different regions can be expressed as

τ−1ϕ ðTÞ ¼ γT ×

8>><
>>:

0.48ðμ=μ0Þð4−η=8−5ηÞ I

0.18
ffiffiffiffiffiffiffiffiffiffi
μ=μ0

p
II

0.24 T=T0

μ=μ0
log ξ−1 III:

ð12Þ

These expressions are obtained using asymptotic behavior
of the function f in Eq. (11) and, therefore, are only
applicable far away from the borderlines. At low enough
temperatures CϕðtÞ ¼ 1 and the function fðT ; ξÞ is inde-
pendent of T . Hence, τ−1ϕ ∼ T2 in region III, which is a GR
result. At high temperatures the phonons contributing to the
electronic dephasing become quasistatic and, consequently,
the dephasing rate is smaller than the out-scattering rate
τ−1out. Unlike region III, in regions I and II the dephasing rate
is determined by a non-GR expression, and is proportional
to temperature, irrespective of η. The existence of the linear
in T regime is the main result of our Letter.
By comparing the rates in regions II and III, one may

conclude that there should be a maximum in the dephasing
rate as a function of μ. Indeed, as it is illustrated by Fig. 4
such a maximum exists. The line indicating the maximum
essentially overlaps with the borderline between the regions

I, II and the region III, which is illustrated by the blue line
in Fig. 3.
Dephasing due to vector potential fluctuations.—Unlike

the scalar potential, the dephasing rates induced by vector
potential are different for different channels owing to the
factor CAl ðΩ; tÞ ¼ 1þ slðsinωt=ωtÞ, where sl ¼ −1 for the
intervalley Cooperons ðl ¼ 0; zÞ and sl ¼ 1 for the intra-
valley Cooperons ðl ¼ x; yÞ. For the magnetoresistance at
weak fields, only the intervalley channels are important.
The dephasing rate produced by the vector potential
coupling is quite similar to its scalar counterpart,
Eq. (12), with obvious modifications due to the change
in the coupling constant and the absence of screening for
the vector potential [30].
Discussion.—We have analyzed the dephasing rate

induced by FPs in graphene, and evaluated it for a wide
range of n and T (see Fig. 3). We determined several
asymptotic regions with temperature dependence evolving
from τ−1ϕ ∼ T2 to τ−1ϕ ∼ T when the temperature increases.
(See Fig. 4 in [30] for an illustration of the temperature
dependence of the dephasing rate.) The transition to linear
behavior in T is related to the fact that at high temperatures
phonons become slow on the time scale of τϕ.
The measured dephasing rate in graphene is usually

compared to the contribution induced by the electron-
electron interaction, τ−1ee , which is linear in T for T < 1=τtr
[11]. However, the observed rate [12–14], when it is linear
in T, always exceeds the theoretical estimation. In view of
the linear dependence on T of the FP’s contribution to
dephasing, it is reasonable to compare its value with τ−1ee . In
principle, it is a competition between two mechanisms,
each determined by a small parameter: the adiabatic
parameter γ and sheet resistance ρ

▫
measured in units of

the quantum resistance. We compare the dephasing rates at
density n ¼ 1012 cm−2 when the sheet resistance ≈0.5kΩ.
Under these conditions, both parameters γ and ρ

▫
are of the

same value. Combining the contributions arising from the
scalar and vector potentials, we obtain τ−1FP=τ

−1
ee ≈ 0.2.

The in-plane phonons generate a dephasing τ−1in that at
T < T in

BG is negligible compared with τ−1FP , while at T >
T in
BG the rate τ−1in ∼ T is comparable with τ−1FP . (Note that for

in-plane phonons, a region of non-GR dephasing rate,
analogous to region II, develops at temperatures≳μ that are
too high to be relevant.) It is important that each of the three
rates τ−1ee , τ−1FP , and τ−1in , has a distinct dependence on the
chemical potential. While τ−1ee decreases with density, τ−1FP ∝
μ1=2 and τ−1in ∝ μ. This opens a way to identify each of these
mechanisms by studying the magnetoresistance as a func-
tion of the chemical potential.
In our consideration, we had in mind suspended gra-

phene. However, our result may also be relevant for
supported samples so long as they are coupled to the
substrate by weak van der Waals forces [36]. One may
expect that such a weak coupling does not provide an

FIG. 4 (color online). Dephasing rate as a function of the
chemical potential at different temperatures. From top to bottom:
T ¼ 15, 10, 5 K.
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essential change in the phonon spectrum. Indeed, it is
known that the phonon spectrum in graphene [37] and
graphite [38] is practically identical for the corresponding
branches. FPs in supported samples have been discussed
recently in connection with the heat transport measure-
ments in Refs. [6,7]. Until now, flexural phonons have been
a delicate object to detect in electronic transport. We
propose here to observe them through weak-localization
measurements.
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