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We construct a topological invariant that classifies density matrices of symmetry-protected topological
orders in two-dimensional fermionic systems. As it is constructed out of the previously introduced
Uhlmann phase, we refer to it as the topological Uhlmann number nU. With it, we study thermal topological
phases in several two-dimensional models of topological insulators and superconductors, computing phase
diagrams where the temperature T is on an equal footing with the coupling constants in the Hamiltonian.
Moreover, we find novel thermal-topological transitions between two nontrivial phases in a model with
high Chern numbers. At small temperatures we recover the standard topological phases as the Uhlmann
number approaches to the Chern number.
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Introduction.—Intrinsic topological orders (TOs) [1–4],
and symmetry-protected topological orders (SP-TOs), like
topological insulators and superconductors in fermionic
[5–13], or more recently, bosonic [14–18] systems, have
been extensively studied and classified. Although these
studies provide a successful picture for quantum systems in
pure states, typically the ground state, very little is known
about the fate of those topological phases of matter when
the system is in a mixed quantum state represented by a
density matrix. In fact, the correct understanding of this
situation becomes particularly relevant in order to address
unavoidable thermal effects on topological phases and
nonequilibrium dynamics under dissipation [19].
Over the last few years, there have been some results

establishing the absence of stable topological phases subject
to thermal effects, like for TOs with spins [20–22], for
SP-TOs with spins [23], or SP-TOs with fermions under
certain conditions [24]. However, in a recent work [25] we
have shown that it is possible to characterize a thermal
topological phase for topological insulators and supercon-
ductors in one-dimensional systems. This thermal topological
phase, classified by Uhlmann holonomies [26,27], is sepa-
rated from a trivial phase by a critical finite temperature, at
which the topological phase abruptly disappears. This result
paves the way towards the characterization of SP-TOs with
fermions in thermal states, or more general density matrices.
In this paper, we have achieved this goal for two-

dimensional fermion systems, either insulating or super-
conducting. This extension from one to two-dimensional
systems is nontrivial in the sense that a direct generalization
of the topological invariants for pure states (Chern num-
bers) to density matrices via the Uhlmann approach leads to
trivial results. However, we have succeeded in circum-
venting this problem and introducing a suitable notion of
topological Uhlmann numbers. These are gauge invariant
and observable quantities which allows for a classification

of topological phases of density matrices in two-
dimensional quantum systems. Specifically, we have
applied this approach to determine new topological phase
diagrams including temperature for three emblematic
models of two-dimensional insulators and superconductors.
As a result, we have found a thermal topological phase for
a two-dimensional chiral p-wave superconductor, which
can host vortices with non-Abelian Majorana fermions,
and thermal-topological transitions between two nontrivial
phases in a model with high Chern numbers.
First of all, let us briefly recall the basic concepts of the

Uhlmann approach, the reader may see [25–27] for a more
detailed picture. Let Q denote the convex set of density
matrices. For some ρ ∈ Q, any of the matrices w such that
ρ ¼ ww† is called an amplitude of ρ. The set of amplitudes
generates the set Q via this equation and forms a Hilbert
space Hw with the Hilbert-Schmidt product ðw1; w2Þ ≔
Trðw†

1w2Þ. This aims to be the density-matrix analogy to the
standard situation where vector states jψi span a Hilbert
space and generate pure states by the relation jψihψ j.
Actually, the phase freedom of pure states [U(1)-gauge
freedom], is generalized to a UðnÞ-gauge freedom (n is the
dimension of the space), as w and wU are amplitudes of the
same density matrix for some unitary operator U.
Now, let kðtÞj1t¼0 define a (closed) trajectory along

a family of density matrices parametrized by k, ρk.
By defining a proper parallel transport condition on the
amplitudes wkðtÞ, ρkðtÞ ¼ wkðtÞw

†
kðtÞ, it is possible to define a

geometric phase for density matrices via the associated
holonomy. More concretely, after the parallel transportation

we have wkð1Þ ¼ wkð0ÞV, with unitary V ¼ Pe
H

AU ; where
P stands for the path ordering operator along the trajectory
kðtÞj1t¼0, and AU ¼ P

μA
U
μ ðkÞdkμ is the so-called Uhlmann

connection form. The geometric phase is defined from the
mismatch between the initial point wkð0Þ and final point
wkð1Þ ¼ wkð0ÞV. Specifically,
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ΦU ≔ argðwkð0Þ; wkð1ÞÞ; ð1Þ

which is a gauge-independent quantity [26,27]. In the
particular gauge where wkð0Þ ¼ ffiffiffiffiffiffiffiffiffi

ρkð0Þ
p , it takes the simple

form

ΦU ¼ argðwkð0Þ; wkð1ÞÞ ¼ arg Tr
h
ρkð0ÞPe

H
AU

i
; ð2Þ

where the components of the connection are given by [28]

AU ¼
X
μ;i;j

jψ i
ki
hψ i

kj½ð∂μ
ffiffiffiffiffi
ρk

p Þ; ffiffiffiffiffi
ρk

p �jψ j
ki

pi
k þ pj

k

hψ j
kjdkμ; ð3Þ

in the spectral basis of ρk ¼
P

jp
j
kjψ j

kihψ j
kj, with

∂μ ≔ ∂=∂kμ.
The phase ΦU, which is experimentally observable

[29–31], has a purely geometric meaning in the sense that
it depends only on the geometry of the trajectory. Although in
generalΦU maychangewith the starting point of the trajectory
kð0Þ, as we shall see, it can be used to construct topological
invariants that are independent of this starting point.
At zero temperature, the standard method to define

topological invariants in two-dimensional SP-TO systems
is by means of Chern numbers. In the simplest scenario, we
consider a time-reversal broken two-band system with the
Fermi energy between both bands. Then the Chern number
is given by

Ch ≔
1

2π

Z
BZ

d2kFxyðkÞ;

FxyðkÞ ≔ ∂xAyðkÞ − ∂yAxðkÞ; ð4Þ

where BZ stands for Brillouin zone, AjðkÞ ¼ ihukj∂juki is
the Berry connection and juki is the eigenvector corre-
sponding to the lower energy band. This number is a
topological invariant which only takes on integer values.
While this kind of constructions can be extended to higher
dimensional systems or systems with time-reversal sym-
metry [13], when attempting the generalization to density
matrices via the Uhlmann connection, one finds the
following fundamental obstruction.
Triviality of the Uhlmann Chern number.—The natural

way to generalize the Chern number to arbitrary density
matrices is to consider the first Chern class associated to
the Uhlmann curvature, which is constructed from the
Uhlmann connection AU via the standard formula for the
non-Abelian case, FU

xy ¼ ∂xAU
y − ∂yAU

x þ ½AU
x ; AU

y �. Then,
according to the theory of characteristics classes [32,33],
the (first) Chern number of the Uhlmann curvature would
be given by ChU ≔ ði=2πÞ RBZ d2kTrðFU

xyÞ; however, this
number turns out to be always zero. The reason for this is
twofold: on the one hand, the Uhlmann connection belongs
to the suðnÞ Lie algebra, so its trace vanishes and so does
the trace of its curvature; on the other hand, the Chern
number is 0 if there is a smooth gauge defined along the

whole BZ [32,33], and this is the case for the Uhlmann
UðnÞ gauge. We can take the gauge wk ¼ ffiffiffiffiffi

ρk
p

which is
well defined provided that ρk is not singular at some
crystalline momentum k, which is a rather natural condition
[34]. Therefore ChU ¼ 0 in any case.
This makes not obvious the extension of two-dimensional

topological invariants by means of the Uhlmann approach.
We hereby show the way to circumvent this obstruction.
Topological Uhlmann numbers.—The fact that ChU

becomes identically zero does not mean that all topological
properties of density matrices are trivial. If this assertion
were true, we could not claim that systems at T ¼ 0 display
topological order, as they are just a particular case of
generally mixed density matrices. Note that ChU is not the
only topological invariant that we can construct on a torus.
Actually, in the Berry case, the Chern number (4) can be
rewritten as [35–37]

Ch ¼ 1

2π

I
dkx

dΦBðkxÞ
dkx

; ð5Þ

where ΦBðkxÞ ¼
H
dkyAyðkx; kyÞ is the Berry phase along

the ky nontrivial homological circle of the torus at the point
kx, and

H
dkx denotes the integration along the kx nontrivial

homological circle. To prove the equality (5), one divides
the surface integral (4) in small slices along the kx direction
and applies the Stokes’s theorem to each of them [the U(1)
gauge, which may be ill defined over the whole BZ,
is always well defined in a sufficiently small slice].
Then, in the limit of slices with infinitesimal width, the
sum becomes an integral and one immediately obtains
Eq. (5). If ΦBðkxÞ displays some 2π-discontinuous jumps
along the kx circle, we take ΦBðkxÞ to be a smooth function
equal to

H
dkyAyðkx; kyÞ mod. 2π in to order to calculate its

derivative. Actually, what the Chern number is measuring is
the number of those 2π jumps, i.e., the number of windings
of ΦBðkxÞ as the kx circle is covered. This is clearly a
topological invariant, particularly a winding number. It
associates every state of the system with an homotopy class
of the Berry phase mapping ΦBðkxÞ∶S1 → S1, between the
nontrivial homological circle S1 and the complex
phases Uð1Þ ≅ S1.
Remarkably, in contrast to Eq. (4), the equivalent formula

(5) allows for a nontrivial generalization to density matrices.
To that aim, we proceed by substituting the Berry phase
ΦBðkxÞ by the Uhlmann phase ΦUðkxÞ, Eq. (2), in Eq. (5):

nU ≔
1

2π

I
dkx

dΦUðkxÞ
dkx

: ð6Þ

Analogously to the Berry case, this integer number is a
topological invariant which classifies the density matrices
of a quantum system according to the homotopy class of
the Uhlmann phase mapping, ΦUðkxÞ∶S1 → S1. Moreover,
since for pure states ΦU ¼ ΦB, by computing nU in a

thermal (Gibbs) state, we have that nU⟶
T→0

Ch; hence, the
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generalization is faithful. Additionally, since ΦU is an
observable, nU is also an observable. We will refer to this
topological invariant nU as the Uhlmann number.
In what follows, we classify the topological properties

of some models of two-band topological insulators and
superconductors at finite temperature according to the
topological invariant nU. We shall consider the analogous
situation to [25] where the thermalization process preserves
the number of particles and the crystalline momentum
such as the equilibrium state splits in one-particle Gibbs
states ρβk ¼ exp½−βHðkÞ�=Z. Here, HðkÞ is the one-particle
Hamiltonian represented by a 2 × 2 matrix in the band
indexes. Thus, the total Hamiltonian of these systems is a
quadratic form Hs ¼

P
k∈BZΨ

†
kHðkÞΨk. In the case of

insulators, Ψk ¼ ðak; bkÞt, where ak and bk represent
two species of fermions, while for superconductors,
Ψk ¼ ðck; c†−kÞt is the Nambu spinor for paired fermions
with opposite crystalline momentum [13]. We take lattice
spacing a ¼ 1 throughout the text.
Two-dimensional topological superconductor.—Let us

consider the chiral p-wave superconductor [13,38–40].
This system can host vortices with non-Abelian anyonic
statistics [40] that are of great relevance in proposals
for topological quantum computation [41]. The lattice
Hamiltonian for this model is

H ¼
X
ij

�
−tðc†iþ1;jci;j þ c†i;jþ1ci;jÞ −

1

2
ðμ − 4tÞc†i;jci;j

þ Δðc†iþ1;jc
†
i;j þ ic†i;jþ1c

†
i;jÞ þ H:c:

�
; ð7Þ

where μ is the chemical potential, t is the nearest-neighbor
hopping, and Δ is the superconductive pairing.
Without lost of generality, we fix t ¼ jΔj ¼ 1=2. By

means of a Bogoliubov transformation, we obtain the
Hamiltonian in the Nambu spinor basis in momentum space,

HðkÞ ¼ − fsinðkyÞσx þ sinðkxÞσy
þ ½μ − 2þ cosðkxÞ þ cosðkyÞ�σzg; ð8Þ

here, σx;y;z are the three Pauli matrices.
At T ¼ 0, the different topological phases as classified

by the Chern number, Eq. (4), are Ch ¼ 1 if 0 < μ < 2,
Ch ¼ −1 if 2 < μ < 4, and Ch ¼ 0 otherwise. For non-
trivial regions Ch ¼ �1, the system presents chiral
Majorana modes at the edges.
At finite temperature, the different topological phases as

classified by the Uhlmann number, Eq. (6), are graphically
represented in Fig. 1. The system displays nontrivial
topological phases nU ¼ �1 even at nonzero temperature
provided it is below a certain critical value Tc, where nU
goes to zero. This critical temperature Tc reaches the
maximum value at the middle points μ ¼ 1 and μ ¼ 3 of
the topological phases Ch ¼ �1 at T ¼ 0. These points are
the ones with the highest value of the gap. As expected, in

the limit of T ¼ 0 we recover the same topological diagram
as given by the Chern number.
Thus, we see that thermal topological phase transitions

are not a unique phenomenon of the one-dimensional case
[25] and they may be also found in two-dimensional
systems.
Two-dimensional topological insulator with high Chern

number.—We consider here the model proposed in [42] that
allows us to study two-dimensional topological insulators
with high values of the Chern number [43], as in multiband
models like the Hofstadter model [44], but still being
two-band and analytically solvable.
This system is realized on a triangular lattice of fer-

mionic atoms at each site with an internal orbital degree of
freedom. The Hamiltonian is given by

H ¼
X
ij

½c†iþ1;jðt1σx þ it3σzÞci;j þ c†i;jþ1ðt1σy þ it3σzÞci;j

þ c†iþ1;jþ1ðt2σzÞci;j þ H:c:�: ð9Þ

The Pauli matrices act on the orbital degrees of freedom
at each site, which give rise to an orbital dependent nearest-
neighbor hopping (t1, t2, t3). In particular, the fermions
can gain π or π=2 phases depending on the initial and
final orbital and position state when tunnelling. As in the
Haldane model (see below), there is no net magnetic flux in
the system, although time-reversal symmetry is broken.
Taking periodic boundary conditions the Hamiltonian in

momentum space turns out to be

HðkÞ ¼ 2t1 cosðkxÞσx þ 2t1 cosðkyÞσy
þ f2t2 cos ðkx þ kyÞ þ 2t3½sinðkxÞ þ sinðkyÞ�gσz:

ð10Þ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 1 (color online). Topological Uhlmann phases for the
p-wave superconductor model as a function of the chemical
potential μ and the temperature T. At T ¼ 0, the system has
Ch ¼ þ1 for 0 < μ < 2, Ch ¼ −1 for 2 < μ < 4, and Ch ¼ 0
otherwise. As T increases, the nontrivial phases remain up to
some critical temperature Tc at which Uhlmann number goes
from nU ¼ �1 to nU ¼ 0.
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Without loss of generality we take t1 ¼ t3 ¼ 1. At zero
temperature the topological phases as a function of t2 are

Ch ¼

8>><
>>:

þ2; if t2 < −2;
þ1; if − 2 < t2 < 0;
−1; if 0 < t2 < 2;
−2; if t2 > 2:

ð11Þ

For T ≠ 0, the topological phase diagram according to
Uhlmann number, Eq. (6), is shown in Fig. 2. In this case
we obtain two very remarkable and new effects with respect
to the previous model. The first one relies on the existence
of two critical temperatures Tc1 and Tc2 . For instance, if at
T ¼ 0 the system is in a topological phase with nU ¼ 2, we
observe that for T < Tc1 the same phase is preserved. Then,
for Tc1 < T < Tc2 there is another thermal topological
phase with nU ¼ 1. If we now increase the temperature
even more, T > Tc2 , then the topological phase becomes
trivial, nU ¼ 0 (see Fig. 2). Hence, there is a critical
transition between phases with different (but nonzero)
Uhlmann numbers by the sole effect of T. Thus, we have
obtained a purely thermal transition between two different
nontrivial topological regimes.
Secondly, at zero temperature we see in Eq. (11) that

there are only nontrivial topological phases in this model.
But, by increasing T, we can always end in a trivial phase
with nU ¼ 0. This supports the intuition that at sufficiently
high temperatures the order is lost for any system.
Haldane model.—The Haldane model [5] was the first

proposal of a two-dimensional lattice of fermions without a
constant magnetic field but with quantized Hall conduc-
tivity. It is a graphenelike model based on a honeycomb
lattice with two different species of fermions (different
sublattices), nearest-neighbor hopping t1, next-nearest-
neighbor hopping t2eiϕ, and a staggered potential m. For
periodic boundary conditions the Haldane Hamiltonian in
the reciprocal space is

HðkÞ ¼
X
i

f½2t2 cosϕcosðk · biÞ�1þ ½t1 cosðk · aiÞ�σx

þ ½t1 sinðki · aiÞ�σy þ ½m− 2t2 sinϕ sinðki · biÞ�σzg;
ð12Þ

where ai are the lattice vectors defining the Bravais lattice
and bi ≔ aiþ1 − ai−1. In particular, we take t1 ¼ 4 and
t2 ¼ 1.
At T ¼ 0, the system presents topological order for

jmj < 3
ffiffiffi
3

p j sinϕj with Chern number Ch ¼ �1 depending
on the sign of m.
The topological phases at finite temperature as a function

ofm and ϕ are depicted in Fig. 3. The red and blue volumes
represent nU ¼ 1 and nU ¼ −1, respectively. Thus, an
integer topological invariant �1 is retained and a thermal
topological phase is present up to some critical temperature
Tc where nU vanishes. Note that at T ¼ 0 we recover the
well-known phase diagram for the Haldane model [5].
Interestingly enough, the thermal topological properties

of this model were first considered in [45]. There, the
topological indicator did not show a critical behavior with
T but shared the same pattern with m and ϕ as nU.
Conclusions and outlook.—We have constructed a new

topological invariant, the Uhlmann number nU, that allows
us to explore topological phases of fermion systems
separated by purely thermal transitions. Notably, we find
always a finite range of temperatures at which this
topological order survives.
We remark that the existence of critical temperatures

seems somehow natural in the Uhlmann approach. For
thermal states, it sets on equal footing the temperature and
the Hamiltonian parameters. Therefore, if there is a critical
behavior as a function of tunnelings and/or staggered
potentials, then certainly one should obtain a critical
behavior with temperature as well. Moreover, since by
increasing T, the quantum coherence properties of any state

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

FIG. 2 (color online). Uhlmann topological phase diagram for
the model of Eq. (10). The Uhlmann number is plotted for
different values of t2 and T. The dashed line highlights the purely
thermal topological transitions between regimes of nU ¼ 2,
nU ¼ 1, and nU ¼ 0 by the sole effect of increasing T.

FIG. 3 (color online). Uhlmann topological phase diagram for
the Haldane model. Red color represents nU ¼ 1 and blue
nU ¼ −1. As we see, at T ¼ 0 the two well-known lobes of
the Haldane model are obtained, and at a certain finite temper-
ature Tc the system goes to a trivial phase.
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are diminished, it is expected that the Uhlmann number
decreases by warming the system up.
As explained in [25], measurements of Uhlmann phases

and numbers may be affordable by adapting experimental
schemes such as [37,46,47], that use interferometric setups
for cold atoms in optical lattices. The mapping between
Uhlmann amplitudes and pure state vectors in an enlarged
Hilbert space should allow for measurements of the
Uhlmann phase using an ancillary system.
Based on these results, we envision the possibility of

extending the current classification of topological insula-
tors and superconductors on several spatial dimensions
[48,49] (also called the “periodic table”), to the case of
thermal topological states using the topological Uhlmann
numbers introduced here.

We are thankful for the following: the Spanish MINECO
Grants No. FIS2012-33152 and No. FIS2009-10061, the
CAM research consortium QUITEMAD S2009-ESP-1594,
the European Commission PICC: FP7 2007-2013, Grant
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the FPU MEC Grant and Residencia de Estudiantes.

Note added.—Recently we were informed by Z. Huang and
D. Arovas about similar extensions of Uhlmann phases to
two-dimensional models [50].

[1] X.-G. Wen, Quantum Field Theory of Many-body Systems
(Oxford University Press, New York, 2004).

[2] X.-G. Wen, Phys. Rev. B 40, 7387 (1989).
[3] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[4] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett.

53, 722 (1984).
[5] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[6] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[7] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96,

106802 (2006).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[9] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).

[10] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007); X.-L. Qi, T. L. Hughes, and S.-C. Zhang,
Phys. Rev. B 78, 195424 (2008).

[11] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[12] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[13] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University
Press, Princteon, NJ, 2013).

[14] A. Vishwanath and T. Senthil, Phys. Rev. X 3, 011016
(2013).

[15] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Phys. Rev.
B 88, 035131 (2013).

[16] T. Senthil, arXiv:1405.4015.
[17] P. Ye and X.-G. Wen, Phys. Rev. B 89, 045127 (2014).
[18] Z.-X. Liu, Z.-C. Gu, and X.-G. Wen, arXiv:1404.2818.

[19] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
İmamoğlu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001
(2013).

[20] R. Alicki, M. Fannes, and M. Horodecki, J. Phys. A 42,
065303 (2009).

[21] M. B. Hastings, Phys. Rev. Lett. 107, 210501 (2011).
[22] Although stable topological phases for standard TOs can

be established at high dimensions D ¼ 4, 6. R. Alicki,
M. Horodecki, P. Horodecki, and R. Horodecki, Open Syst.
Inf. Dyn. 17, 1 (2010); H. Bombin, R. W. Chhajlany,
M. Horodecki, and M. A. Martin-Delgado, New J. Phys.
15, 055023 (2013).

[23] E. P. L. van Nieuwenburg and S. D. Huber,
arXiv:1403.2387.

[24] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev.
B 86, 155140 (2012).

[25] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev.
Lett. 112, 130401 (2014).

[26] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
[27] A. Uhlmann, Ann. Phys. (Berlin) 501, 63 (1989).
[28] M. Hübner, Phys. Lett. A 179, 226 (1993).
[29] M. Ericsson, A. K. Pati, E. Sjöqvist, J. Brännlund, and

D. K. L. Oi, Phys. Rev. Lett. 91, 090405 (2003).
[30] J. Aberg, D. Kult, E. Sjöqvist, and D. K. L. Oi, Phys. Rev. A

75, 032106 (2007).
[31] J. Zhu, M. Shi, V. Vedral, X. Peng, D. Suter, and J. Du,

Europhys. Lett. 94, 20007 (2011).
[32] T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66,

213 (1980).
[33] M. Nakahara,Geometry, Topology and Physics (CRC Press,

Bristol, 2003).
[34] This second argument also implies vanishing higher-order

Chern numbers for the Uhlmann connection.
[35] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[36] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,

1959 (2010).
[37] D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler, Phys.

Rev. Lett. 110, 165304 (2013).
[38] G. E. Volovik, JETP Lett. 70, 609 (1999).
[39] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[40] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[41] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[42] D. Sticlet, F. Piéchon, J.-N. Fuchs, P. Kalugin, and P. Simon,

Phys. Rev. B 85, 165456 (2012).
[43] See also: S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma,

Phys. Rev. B 86, 241112(R) (2012).
[44] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[45] A. Rivas, O. Viyuela, and M. A. Martin-Delgado, Phys. Rev.

B 88, 155141 (2013).
[46] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin,

T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795
(2013).

[47] F. Grusdt, D. Abanin, and E. Demler, Phys. Rev. A 89,
043621 (2014).

[48] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[49] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[50] Z. Huang and D. P. Arovas, Phys. Rev. Lett. 113, 076407

(2014).

PRL 113, 076408 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

15 AUGUST 2014

076408-5

http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevB.88.035131
http://dx.doi.org/10.1103/PhysRevB.88.035131
http://arXiv.org/abs/1405.4015
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://arXiv.org/abs/1404.2818
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1103/PhysRevLett.107.210501
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1088/1367-2630/15/5/055023
http://dx.doi.org/10.1088/1367-2630/15/5/055023
http://arXiv.org/abs/1403.2387
http://dx.doi.org/10.1103/PhysRevB.86.155140
http://dx.doi.org/10.1103/PhysRevB.86.155140
http://dx.doi.org/10.1103/PhysRevLett.112.130401
http://dx.doi.org/10.1103/PhysRevLett.112.130401
http://dx.doi.org/10.1016/0034-4877(86)90055-8
http://dx.doi.org/10.1002/andp.19895010108
http://dx.doi.org/10.1016/0375-9601(93)90668-P
http://dx.doi.org/10.1103/PhysRevLett.91.090405
http://dx.doi.org/10.1103/PhysRevA.75.032106
http://dx.doi.org/10.1103/PhysRevA.75.032106
http://dx.doi.org/10.1209/0295-5075/94/20007
http://dx.doi.org/10.1016/0370-1573(80)90130-1
http://dx.doi.org/10.1016/0370-1573(80)90130-1
http://dx.doi.org/10.1103/RevModPhys.66.899
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/PhysRevLett.110.165304
http://dx.doi.org/10.1103/PhysRevLett.110.165304
http://dx.doi.org/10.1134/1.568223
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevB.85.165456
http://dx.doi.org/10.1103/PhysRevB.86.241112
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.88.155141
http://dx.doi.org/10.1103/PhysRevB.88.155141
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1103/PhysRevA.89.043621
http://dx.doi.org/10.1103/PhysRevA.89.043621
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1063/1.3149495

