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Two-dimensional topological phases are characterized by Thouless-Kohmoto-Nightingale–den Nijs
integers, which classify Bloch energy bands or groups of Bloch bands. However, quantization does not
survive thermal averaging or dephasing to mixed states. We show that using Uhlmann’s parallel transport
for density matrices [Rep. Math. Phys. 24, 229 (1986)], an integer classification of topological phases can
be defined for a finite generalized temperature T or dephasing Lindbladian. This scheme reduces to the
familiar Thouless-Kohmoto-Nightingale–den Nijs classification for T < Tc;1, becomes trivial for T > Tc;2,
and exhibits a “gapless” intermediate regime where topological indices are not well defined. We
demonstrate these ideas in detail, applying them to Haldane’s honeycomb lattice model and the
Bernevig-Hughes-Zhang model, and we comment on their generalization to multiband Chern insulators.
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Introduction.—The discovery of the integer quantum
Hall effect and its subsequent theoretical formulation
heralded a new paradigm of thinking in condensed matter
physics, which has by now blossomed into the rapidly
growing field of topological phases [1–3]. In integer
quantum Hall systems, the Hall conductance σxy is an
integer multiple C of e2=h, where C is the first Chern index
for the projector onto the filled Bloch bands of the system,
as first pointed out in a seminal paper by TKNN [4]. Since
an integer cannot change continuously, σxy is robust against
perturbations to the system as long as the bulk energy gap is
finite, and is said to be topologically protected. In sym-
metry-protected topological (SPT) systems, the Chern
number itself may vanish by symmetry, but one can still
define a topological index, using a restricted set of wave
functions (e.g., a subset of bands [5,6], or within a subspace
in the Brillouin zone [7], etc.), which remains a nonzero
integer, an example being the spin Chern number in
quantum spin Hall systems. The Chern number is thus
of central importance in the topological characterization of
two-dimensional band insulators. Another example is that
of topological Floquet systems [8–11], which generally are
open systems coupled periodically to an environment,
typically idealized as pure eigenstates of the time evolution
operator over one period.
Topological classifications and topological phase tran-

sitions thus far have been defined for systems at T ¼ 0.
When dealing with mixed states, such as T > 0, quantiza-
tion is lost. For example, the thermal average of the Chern
number would include a contribution from bands not filled
at zero temperature, and would no longer be an integer. Any
extension of discrete phase classifications to mixed states
should be elicited by density matrices [12,13]. Two natural
desiderata of such a scheme would be that it reproduce the
familiar TKNN or Z2 classification for pure states, and that
it be topologically trivial for T → ∞.

An approach to marrying dephasing in open systems
with quantized response functions such as σxy was devel-
oped recently by Avron and collaborators [14], who
introduced a notion of compatibility between dissipative
and nondissipative evolution of the density matrix in a
Lindbladian setting, under which the nondissipative
response of the inverse matrix of response coefficients is
immune to dephasing. The compatibility condition is
highly nongeneric, and below we shall show how dephas-
ing can still allow for a discrete classification of topological
phases in a more general setting. Our approach is based on
Uhlmann’s definition of parallel transport for density
matrices [15,16], which maps a cyclic path in a space of
density matrices to a matrix M (see Eq. (1) below). The
simplest prescription is to examine Uhlmann’s phase,
~γ ≡ arg½TrM�, which has been studied in the context of
quantum information, and may be experimentally measur-
able [17–20]. Recently Viyuela et al. [21] used ~γ to identify
topological transitions in one-dimensional fermion systems
at finite temperature, where ~γ changes discretely from π to 0
at a critical temperature Tc. For two-dimensional systems,
which are the focus of this work, we will compute M at
each kx, and study the spectral flow of its (complex)
eigenvalues with respect to kx. This will be demonstrated
in detail using Haldane’s honeycomb lattice model [22] and
the Bernevig-Hughes-Zhang model [23]. We will briefly
comment on its application to more general multiband
Chern insulators such as the Hofstadter model [24].
Parallel transport and geometric phases of open

systems.—The geometric content over a cyclic path of
density matrices can be understood using Uhlmann’s parallel
transport [15]; see also the Supplemental Material [25].
Consider a cyclic path of density matrices, ρ0; ρ1; ρ2;…; ρN ,
with ρa ≡ ρðgaÞ where ga is some parameter vector, e.g., a
Bloch momentum, and gN ¼ g0. Introduce for each ρa two
matrices Wa and Ua, where Wa is the amplitude and Ua is
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unitary, with Wa ¼ ffiffiffiffiffi
ρa

p
Ua, hence ρa ¼ WaW

†
a. The matri-

ces ρa, Wa and Ua are all square and of equal rank.
Uhlmann’s parallel transport is a protocol for determining
theUa. Two amplitudesWa andWb are defined as parallel if
the choice of Ua and Ub renders W†

aWb a non-negative
definite Hermitian matrix. This is equivalent to minimizing
the norm ∥Wa −Wb∥, where ∥A∥ ¼ TrðA†AÞ. Uhlmann’s
condition is the analogue of Pancharatnam’s parallelity
hψajψbi > 0 for pure states [26]. The geometric content
is contained inW0W

†
N , which is the mismatch ofW0 with its

parallel transported version WN . This is analogous to the
situation vis-à-vis pure states, where the Berry phase is
encoded in the mismatch between a state before and after
a parallel transport, expðiγBerryÞ ¼ Trðjψ0ihψ†

N jÞ [27,28].
Since we will only be interested in the eigenvalues of
W0W

†
N , it is convenient to introduce ‘holonomy matrix’

M which has the same eigenvalues as W0W
†
N ,

M≡ ρ0U0U
†
N ¼ ρ0U01U12 � � �UN−1N; ð1Þ

whereUab ≡UaU
†
b. The matrixM is the central object to be

considered in the rest of this Letter.
To compute Uab, we note that parallelity allows the

polar decomposition
ffiffiffiffiffi
ρa

p ffiffiffiffiffi
ρb

p ¼ FabUab, where Fab ¼
ð ffiffiffiffiffi

ρa
p

ρb
ffiffiffiffiffi
ρa

p Þ1=2 is known as the fidelity. Invoking singular
value decomposition yields

ffiffiffiffiffi
ρa

p ffiffiffiffiffi
ρb

p ¼ LaDabR
†
b ⇒ Uab ¼ LaR

†
b; ð2Þ

where La and Rb are unitary matrices. Dab is diagonal
(note that a, b do not label matrix elements), real, and non-
negative, and consists of eigenvalues of Fab. La, Rb and
Dab all have the same matrix size as ρa and ρb.
The eigenvalues of M are in general complex, and we

write zi ≡ rieiγi in polar form. We will refer to the phases γi
as the geometric phases of the path that generates M. This
is motivated by the fact that at zero temperature, the
holonomy M reduces to a Wilson loop operator whose
(nonzero) eigenvalues are the non-Abelian Berry phase
factors, see Supplemental Material [25]. Note that these
geometric phases are not independent due to the restriction
that detðMÞ be real and positive, which follows from
Eqs. (1) and (2).
Topological characterization of two-dimensional

insulators at finite temperature.—We formulate our scheme
for general two-dimensional N-band insulators with
Lx × Ly unit cells, assuming translational invariance and
periodic boundary conditions in both directions. Let jψnki
be the eigenstates of the momentum space HamiltonianHk,
where n is the band index and k is the Bloch momentum. At
the single particle level, the role of density matrix is played
by the correlation matrix

ρk ¼
P

N
n;n0¼1

xnn0 ðkÞjψnkihψn0kj; ð3Þ

where xnn0 ðkÞ are the density matrix elements at each
value of k. For thermal distributions, we take ρk ¼
Ake−ðHk−μNkÞ=T , where ν≡ Trρk is the number of filled
bands at T ¼ 0, independent of k. At fixed kx, one can
compute the holonomy Mkxðμ; TÞ over the path
ky ∈ ½0; 2π�. Then as kx sweeps a 2π cycle, the eigenvalues
fzig trace closed paths in the complex plane. A similar
picture emerges when one considers Lindbladian evolution,

_ρ ¼ −
i
ℏ
½H0; ρ� þ

X
j

CjρC
†
j −

1

2
C†
jCjρ −

1

2
ρC†

jCj: ð4Þ

With one Lindblad operator C ¼ 1
2

ffiffiffiffiffi
γþ

p
σþ þ 1

2

ffiffiffiffiffi
γ−

p
σ−

connecting two bands, the fixed point of this evolution
is ρð∞Þ ¼ diagðx; 1 − xÞ, where x ¼ γþ=ðγþ þ γ−Þ.
Assuming γ� are independent of k, the density matrix is
equivalent to a thermal one for a flat band model of the type
discussed in Ref. [21].
The topological numbers of the system are to be

extracted from the winding of the fziðkxÞg. However, we
need to take into account that the amplitude spectrum
friðkxÞg has a gap structure much like that of Bloch
spectra. If a particular level riðkxÞ is isolated from the
rest, then one can define a winding number of the
corresponding geometric phase, Ci≡ ½γið2πÞ−γið0Þ�=2π.
At zero temperature, since M reduces to the Wilson loop
operator, Ci reduces to the winding number of the ith non-
Abelian Berry phase [29]. For a group of K levels which
evolve into each other but remain isolated from the
remainder, the topology of the winding is naturally char-
acterized as an element of the K-string braid group on the
punctured plane, but there are two natural simple choices.
(a) The collective topological number could be the winding
number of the sum of the phases,

P
K
j¼1 argðzjÞ. This

choice is motivated by the analogy with zero temperature
gapless energy bands, where the total Chern number is
the winding number of the sum of the individual Berry
phases. (b) Alternatively it could also be defined as the
winding number of the phase of the sum, argðPK

j¼1 zjÞ.
Such a choice draws analogy from multipath interference
type experiments, where each complex eigenvalue zi
encodes both the weight and the phase of the ith path,
and the output is a coherent sum of these complex weights.
In both cases, with g spectral gaps in frig, one obtains
gþ 1 topological numbers. For time reversal invariant
topological insulators, one should instead consider the
time-reversal partner switching similar to that of the
non-Abelian Berry phases [7,30,31]. As temperature
increases from zero, the gap structure of frig also changes,
and the system experiences a series of topological tran-
sitions until it reaches a fully trivial stage where all
topological numbers are zero.
We note that the spectrum ofM in Eq. (1) depends on the

starting point of the loop. Varying this origin, the general
picture of a T-dependent evolution and topological
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transitions remains unchanged, although the values of T
where transitions occur may vary. One can then define a
critical temperature by minimizing Tcðk0yÞ over the loop
origin k0y. For some models, as we shall see, an origin-
independent transition can be defined. Additionally, one
also can obtain origin-independent transitions in models of
Lindbladian evolution.
Haldane model.—The Haldane model [22] describes

electrons hopping on a honeycomb lattice in a fluctuating
magnetic field. The model has three parameters t, m, ϕ,
where t≡ tNNN=tNN is the ratio of hopping amplitudes
between second neighbors and first neighbors, m is the
Semenoff mass contrasting the two sublattices, and ϕ is a
phase associated with the second neighbor hops which
breaks time reversal symmetry. The ground state can be
either a Chern insulator (with C ¼ �1) or a trivial insulator
(C ¼ 0) depending on the choice of parameters.
In Figs. 1(a)–1(c), we plot the spectral flow of holonomy

eigenvalues (both amplitudes and phases) as functions of
kx, at three different temperatures. Here kx ≡ k · ax is the
Bloch wave vector along the honeycomb basis vector in the
x direction. The matrixM has two eigenvalues for two band
models. From detM > 0, the two geometric phases are
opposite to each other, and we shall focus on γ>, the phase
corresponding to the larger eigenvalue magnitude (blue in
the figure).
We find that there are three temperature regimes with

distinctive spectral patterns. (i) In the low temperature
regime (panel a), γ> winds once, and its spectral flow is a
minor deviation from the Berry phase flow (i.e., its zero
temperature limit). The two amplitudes remain gapped. As

T increases, the amplitude gap reduces and the deviation of
γ> increases. (ii) In the intermediate temperature regime
(panel b), the amplitudes touch and stay gapless. There is
no winding in the individual phases. (iii) In the high
temperature regime (panel c), the amplitudes are gapped
again, and γ> does not wind.
At fixed kx, the correlation matrices are labeled by the

Bloch wave vector along the a2 basis vector of the
honeycomb lattice, denoted as k ¼ k · a2. Since these are
2 × 2 matrices, we can write

ffiffiffiffiffi
ρk

p ¼ χk½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jbkj2

p
þbk ·σ�,

implicitly defining χk and bk through Eq. (3). In Fig. 1(b),
the kx point at which the amplitude gap closes, denoted as
kc, coincides with where the π Berry phase occurs. This is
the coplanar point, kc ¼ π þ sin−1ðm=6t sinϕÞ [32], where
the entire path of bk lies on the same plane that passes
through the origin. The winding of γ> over kx is entirely
determined from its value at kx ¼ kc: it winds once if
γ>ðkcÞ ¼ π, otherwise it does not wind. The eigenvalues of
MðkcÞ are

z� ¼ 1

2
Trðρ0Þ½cosð2SÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − sin2ð2SÞ

q
� ð5Þ

with ρ0 the correlation matrix at ðkx; kyÞ ¼ ðkc; 0Þ, and

S ¼ 1
2

����
H
bk × dbk

����; m ¼ f>−f<
f>þf<

; ð6Þ

i.e., S is the area enclosed by the path of bk. Here f> ≥ f<
are the two eigenvalues of ρ0 (i.e., Fermi weights). From
Eqs. (5) and (6), we can understand the spectral evolution

FIG. 1 (color online). Holonomy eigenvalues of the Haldane model (a–c) and the Bernevig-Hughes-Zhang (BHZ) model (d)–(f).
Top panels: amplitudes of eigenvalues. Bottom panels: phases of eigenvalues, black solid lines correspond to the Berry phase of
the lower band (a)–(c) or the non-Abelian Berry phases of the lower two bands (d)–(f), i.e., the T ¼ 0 limit. Color or point type encodes
the eigenvalue index. For the Haldane model: in (a), the amplitudes are gapped, and the two phases wind in opposite directions. In (b), the
amplitudes are gapless. The phases do not wind. In (c), the amplitudes are gapped again. The phases do not wind. For the BHZ model: The
amplitudes are gapped in (d) and (f), but gapless in (e). In the phases, partner switching occurs in (d) but not in (f), see text. Normalization of
density matrices is chosen as Trρk ¼ ν where ν is the number of filled bands at T ¼ 0. Parameters used for Haldane model: m ¼ 0.5,
ϕ ¼ 0.3π, t ¼ 0.3, μ ¼ 0.5. Parameter used for BHZ model: m ¼ 1.1, Δ ¼ 0.3, μ ¼ 0. Lattice size: Lx ¼ 200, Ly ¼ 50.
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as a function of temperature: If m < j sinð2SÞj, z� forms a
complex conjugate pair, and the amplitude spectrum is
gapless; otherwise, they are both real and the amplitudes
are gapped. In the gapped regimes, one can check the zero
and infinite temperature limits: at T ¼ 0, S ¼ π=2 [33] and
m ¼ 1, yielding zþ ¼ 0 and z−¼−1, hence γ>ðT¼0Þ¼π,
whereas for T → þ∞, m ¼ S ¼ 0, zþ ¼ 1 and z− ¼ 0,
hence γ>ðT → ∞Þ ¼ 0.
As discussedbefore, in the regimewithgapless amplitudes,

one has to consider the winding of a collective phase. Using
~γ ≡ arg½TrM� (choice b) and Eq. (5), we have, at kx ¼ kc,
expði~γÞ ¼ sgn½cosð2SÞ�. On the other hand, in the gapped
regimes, it follows from detM > 0 that z� and hence TrM
must have the same sign, implying that γ> ¼ ~γ at kc. Thus one
can use ~γ in the entire range of T as the geometric phase. The
topological index is entirely determined by ~γ at kc, or
equivalently the area S circulated by the path of bk, regardless
of the gap structure of the amplitudes—a feature of two band
models. Since increasing T generically causes the loop area S
to shrink, sgn½cosð2SÞ�must change from− toþ and not the
other way around. One can thus define a unique transition
temperature Tc such that ~γðkcÞ changes discretely from
π to 0. The two-dimensional topological transition coincides
with the effective one-dimensional transition [21] at kc.
Geometrically, such a topological transition occurs when
the loop area S reaches half of its zero temperature value,
SðTcÞ ¼ Sð0Þ=2 ¼ π=4. Note that the same critical temper-
ature Tc would be obtained by using Ma ¼ ρaUaU

†
aþN for

a ≠ 0, becauseS is independent ofa according toEq. (6). The
transition temperature Tc may depend on other external
parameters of the system as well. In Fig. 2, we allow the
chemical potential μ to vary, and plot TrM ¼ cosð2SÞ in the

(μ, T) space. TcðμÞ is determined as the curve at which
cosð2SÞ crosses zero. For Lindbladian evolution, the area is
SðxÞ ¼ π=4ð1–2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp Þ, and setting SðxcÞ ¼ 1
2
Sð0Þ we

obtain xc;� ¼ 1
2
� ffiffiffi

3
p

=4. Our result for xc;þ corresponds to
Tc in Ref. [21]’s analysis of the flat band case. We note that
x ¼ 1

2
corresponds to T ¼ �∞, with x < 1

2
a regime of

negative temperature.
BHZ model.—We briefly discuss the BHZ model [23] as

an example of the Z2 class. The Hamiltonian is H¼
sinkxσzτxþ sinkyτyþð2−m− coskx− coskyÞτzþΔσyτy,
with Δ ≠ 0 breaking inversion symmetry. The parameters
are chosen so that it is in the topological phase at zero
temperature. In Fig. 1(d)–(f), we plot its holonomy spectrum
in the half-Brillouin zone. The four amplitudes form two
pairs (partners), which are gapless for intermediate T but
gapped for both low and high T. In the low temperature
regime (d), each pair of the geometric phases exhibit partner
switching [7,30] where they change from π at kx ¼ 0 to 0 at
kx ¼ π; hence, the system is topological. After going
through the gapless regime (e), the system becomes trivial
in the high temperature gapped regime (f) where there is no
partner switching.
Conclusion and discussion.—In this work, we introduced

a topological characterization of two-dimensional band
insulators described by mixed states, resulting from thermal
and/or dephasing effects. The classification is in terms of the
winding of geometric phases defined through Uhlmann’s
parallel transport of density matrices. For Haldane’s honey-
comb lattice model, we found three phases: (i) a low-
temperature topological phase classified by the familiar
TKNN integers, (ii) a “gapless” intermediate phase, and
(iii) a topologically trivial high temperature phase. We found
a similar structure in the BHZ model vis-à-vis partner
switching which defined Z2 quantum numbers. An analo-
gous procedure works for multiband Chern insulators as well
[31], where there is a series of topological transitions
induced by changes in the gap structure of the amplitude
spectrum.
While our primary interest is an extension of topological

indices from pure states to mixed states, we note that it
should be experimentally relevant as well [17,18,20,21]. In
the context of band insulators, there already exist exper-
imental techniques to measure Berry phases in one dimen-
sion [34] and Chern numbers in two dimensions [35]. Such
techniques can be extended to measure the Uhlmann phase
~γ ¼ TrM through the so-called purification procedure [17],
where the amplitude matrixW of a mixed state is mapped to
a pure state in an enlarged system, the reduced density
matrix of which is the mixed state. The Uhlmann phase ~γ
of the mixed state is identified with the Berry phase of
the enlarged system, and is thereby measurable. The design
and implementation of an adiabatic protocol to measure
the Uhlmann phase winding and associated phase transi-
tions of the types discussed here remains a tantalizing
possibility.

FIG. 2 (color online). TrM at kx ¼ kc for the Haldane model
in the parameter space of temperature T and chemical potential μ.
At kx ¼ kc, TrM is real so ~γ depends solely on its sign.
A topological transition occurs when TrM crosses zero, giving
Tc as a function of μ. Other parameters are the same as
Fig. 1.
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