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We propose and study a setup realizing a stable manifold of non-Fermi-liquid states. The device
consists of a mesoscopic superconducting island hosting N ≥ 3 Majorana bound states tunnel coupled to
normal leads, with a Josephson contact to a bulk superconductor. We find a nontrivial interplay between
multichannel Kondo and resonant Andreev reflection processes, which results in the fixed point manifold.
The scaling dimension of the leading irrelevant perturbation changes continuously within the manifold and
determines the power-law scaling of the temperature-dependent conductance.
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Introduction.—Nanoscale devices hosting Majorana
bound states are expected to display spectacular nonlocal
quantum correlations and long-range entanglement [1–4].
Experimental reports of Majorana fermions [5–10] have so
far focused on effectively noninteracting systems, where
local resonant Andreev reflection (RAR) physics domi-
nates the transport characteristics [2]. Since interactions
tend to suppress RAR, several interesting nonlocal phe-
nomena have been predicted for interacting Majorana
devices, such as electron teleportation [11–13], interaction-
induced unstable fixed points [14,15], or the topological
Kondo effect [16], where strong charging effects cause
a multichannel Kondo state. As a general rule, such states
display non-Fermi-liquid (NFL) behavior [17–22]. The
Kondo and RAR states, respectively, constitute mutually
exclusive phases in all settings studied up to now
[14–16,23]. In this Letter, we predict that a nontrivial
coexistence of Kondo and RAR physics takes place in
the device shown in Fig. 1, where a mesoscopic super-
conducting island is Josephson coupled to a conventional
bulk superconductor and hosts N ≥ 3 Majorana fermions
weakly contacted by normal leads. In principle, all ingre-
dients are experimentally available [5–10]. We find that
the Kondo-RAR interplay in such a device can result in a
continuously tunable manifold of NFL states. Although
similar physics was proposed before for conventional
Kondo systems [24–28], anisotropies destabilize the cor-
responding NFL fixed points and have prevented their
experimental observation. In our proposal, the stability of
the NFL manifold is tied to the nonlocal Majorana
representation of an effective “quantum impurity,” where
Kondo screening and RAR processes both originate from
the tunnel coupling between Majorana fermions and lead
electrons.
Before entering a detailed discussion, we briefly sum-

marize our main results. The low-energy physics near the
ground-state NFL manifold is governed by a leading
irrelevant perturbation of scaling dimension
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where the N dimensionless parameters δj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γj=TK

p
depend on the lead-to-Majorana hybridizations Γj and
the Kondo temperature TK being the respective energy
scales for RAR and Kondo physics. The (δ1;…; δN)
domain with y > 1 corresponds to the NFL manifold,
which could be explored experimentally by varying the
Γj via gate voltages [5]. The NFL character is manifest in
the noninteger and continuously tunable scaling dimension

FIG. 1 (color online). Schematic device setup: Several one-
dimensional (1D) nanowires with strong spin-orbit coupling are
deposited on a floating superconducting island with charging
energy EC. Choosing appropriate system parameters, see
Refs. [2–4] for a thorough discussion, each nanowire hosts
two spatially separated Majorana bound states. The overhanging
parts of the wire act as normal-conducting leads, where only
effectively spinless 1D fermions ΨjðxÞ ∼ ηj þ iρj couple to the
island. Of the Ntot Majorana states on the island, N are connected
to leads (here N ¼ 3), where the other Ntot − N Majorana
fermions have no effect on the physics described here. The
island also couples to a bulk superconductor through the
Josephson energy EJ.
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in Eq. (1). Interestingly, a similar low-energy model has
been obtained for the two-channel two-impurity Kondo
model, despite a different physical origin, where scaling
dimensions and finite-size spectra were derived in
Refs. [24,25]. Our predictions can be observed in charge
transport, since y governs the power-law scaling of the
temperature-dependent conductance tensor at T ≪ TK ,

GjkðTÞ ¼
2e2

h

�
δjk − Ajk

�
T
TK

�
2ðy−1Þ

þ � � �
�
; ð2Þ

with dimensionless numbers Ajkðδ1;…; δNÞ of order unity.
Albeit Eq. (2) coincides with the local RAR result [2] for
T ¼ 0, it reflects entirely different physics. This difference
is readily observable at finite T, where the nonlocal cond-
uctancesGj≠k in Eq. (2) are finite, in marked contrast to the
RAR case.
Device proposal.—We consider the setup in Fig. 1,

where a floating mesoscopic superconducting island, with
charging energy EC, is in proximity to at least two nano-
wires with strong spin-orbit coupling, e.g., InSb or InAs.
The island’s superconducting phase, φ, is taken relative to a
conventional bulk superconductor, where the Josephson
energy EJ denotes their coupling and we assume a large
pairing gap such that quasiparticle poisoning is negligible.
In the presence of a Zeeman field, Majorana bound states
are induced near each end of a superconducting nanowire
part [2–10]. We study the case that N ≥ 3 Majorana
fermions, described by operators γj ¼ γ†j with anticommu-
tator algebra fγj; γkg ¼ δjk, are connected to normal leads.
We assume that different Majorana states are well
separated; i.e., direct tunnel couplings can be neglected.
Note that their distance may exceed the superconducting
coherence length since the phase dynamics of the Cooper
pair condensate renders transport intrinsically nonlocal
in such a device [11]. The island Hamiltonian Hisland ¼
ECðQ − ngÞ2 − EJ cosφ then contains a charging and a
Josephson energy contribution, respectively. The total
electron number on the island, Q, is due to Cooper pairs
and occupied Majorana states [11–13], and the backgate
parameter ng has no effect in the regime studied
below. Using units with ℏ ¼ kB ¼ 1, the Hamiltonian
H ¼ H0 þHt þHisland also contains a lead part H0 ¼
−ivF

P
j

R∞
−∞ dxΨ†

j∂xΨj with Fermi velocity vF. In each
lead, only an effectively spinless chiral 1D fermion, ΨjðxÞ,
corresponding to the overhanging wire parts in Fig. 1,
connects to the island by tunneling via the Majorana
fermion γj. This is described by the tunneling
Hamiltonian [12]Ht¼

P
N
j¼1λje

−iφ=2Ψ†
jð0ÞγjþH:c:, where

the tunnel couplings λj are chosen real positive and x ¼ 0

marks the contact. With hybridization parameters
Γj ¼ 2πν0λ

2
j , the lead density of states ν0 ¼ 1=πvF, and

the Josephson plasma frequency Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
, the

regime of interest is maxðΓjÞ ≪ Ω≲ EJ. In presently

studied experimental devices [5,29], both the pairing gap
and the charging energy of the island are of the order of a
few meV. Choosing also the value of EJ—which mainly
depends on the interface to the bulk superconductor—
within the meV regime, and noting that the hybridizations
are also gate tunable with Γj ≈ 0.01;…; 1 meV [5], the
implementation of our proposal seems possible. The
observation of the predicted phenomena also requires
low temperatures T ≪ TK; see below.
Effective low-energy Hamiltonian.—We next show that

for maxðΓjÞ ≪ Ω≲ EJ, a simpler effective low-energy
theory emerges. In this regime, the phase φ will mostly
stay near the minima of the −EJ cosφ term inHisland. Phase
slips due to tunneling between adjacent minima are
exponentially suppressed [30], and it is justified to neglect
them. The phase dynamics then consists of fast zero-point
oscillations of frequencyΩ around a given minimum. Since
hðδφÞ2i ¼ Ω=2EJ, the oscillation amplitude remains small
and we may integrate over the φ fluctuations. The resulting
effective low-energy Hamiltonian Heff ¼ H0 þHA þHK
is local on time scales above Ω−1. Expressing the lead
fermions by pairs of chiral Majorana fields ΨjðxÞ ¼
½ηjðxÞ þ iρjðxÞ�=

ffiffiffi
2

p
we obtain

H0 ¼−
ivF
2
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Z
dxðηj∂xηjþρj∂xρjÞ;

HA ¼
ffiffiffi
2

p
i
X
j

λjγjρjð0Þ; HK ¼
X
j<k

Jjkγjγkηkð0Þηjð0Þ: ð3Þ

The positive “exchange couplings,” Jjk ¼ λjλk=4EJ are
controlled by EJ. Although EC does not appear in Heff , it
enters the bandwidth given by the plasma frequency
Ω. In Eq. (3), HA couples only to ρj and describes RAR
[2], whileHK only involves the ηj Majoranas and describes
exchange processes between lead electrons and the
components γjγk of the “impurity spin.” On top of terms
∼Ψ†

jð0ÞΨkð0Þ, which also appear in the topological Kondo
model of Ref. [16],HK contains crossed Andreev reflection
contributions, e.g., terms ∼Ψ†

jð0ÞΨ†
kð0Þ, where a Cooper

pair splits into two electrons in separate leads. Because of the
phase coherence in the superconductor, which is behind the
e∓iφ=2 phase factors inHt, both types of exchange processes
enter HK with equal weight. Without the HA term, Heff is
mathematically identical to the SO1ðNÞ Kondo model
recently proposed for crossed Ising chains, which hosts a
NFLKondo fixed point [31,32] and, forN ¼ 3, is equivalent
to the conventional two-channel Kondo model because of
the group relation SO1ð3Þ ∼ SU2ð2Þ.
Renormalization group analysis.—By employing stan-

dard energy-shell integration [21], we find the one-loop
renormalization group (RG) equations

dΓj

dl
¼ Γj;

dJj≠k
dl

¼ 2ν0
X

m≠ðj;kÞ

JjmJmk

1þ Γm=Ω
: ð4Þ
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The running couplings ΓjðlÞ thus approach the strong
coupling limit according to the standard RAR equations
[2], while the RG flow of the exchange couplings is
coupled to the Γj. Similar to what happens in the pure
Kondo case [31], Eq. (4) implies that anisotropies in the
Jjk are RG irrelevant, while the isotropic part is marginally
relevant. We thus write Jjk ¼ Jð1 − δjkÞ, and neglect
irrelevant deviations from isotropy from now on. We shall
also assume Γj ¼ Γ, but return to the role of Γj anisotropy
later. To one-loop accuracy, we then obtain the estimate
TK ≈ Ω exp ð − ðEJ=ðN − 2ÞΓÞÞ for the Kondo tempera-
ture. Moreover, Eq. (4) can now be solved analytically. This
solution shows that both ΓðlÞ and JðlÞ flow towards strong
coupling for Γ < TK. Especially for large N, it is possible
to satisfy this condition by choosing Ω ≈ EJ and not too
small ratio Γ=EJ. In what follows, we focus on the regime
Γ < TK, and analyze the physics at low temperatures,
T ≪ TK . For Γ > TK, one instead arrives at the well-
known RAR picture [2]. To estimate the Kondo scale for
typical parameters, let us put, say, N ¼ 6, Γ ¼ 0.2 meV,
and Ω¼EJ ¼ 2meV, where TK ≈ 0.27 meV, and Γ < TK
is satisfied. The low-temperature regime with T ≪ TK is
then also accessible to experiments.
Quantum Brownian motion analogy.—The low-

temperature physics within the most interesting regime
Γ < TK can be captured from an instructive analogy to
quantum Brownian motion in a lattice-periodic potential.
To see this, we first bosonize the lead fermions in Heff

by writing ΨjðxÞ ¼ ξ−1=2K ζjeiϕjðxÞ [22] with boson fields
ϕjðxÞ, where ξK ¼ vF=TK sets the short-distance scale
and additional Majorana fermions, ζj, represent the
Klein factors enforcing fermion anticommutators between
different leads [22]. Following Refs. [14,15], each “true”
Majorana fermion γj is combined with the respective
“Klein” Majorana ζj to form an auxiliary fermion. The
latter has a conserved occupation number and can be
gauged away [14]. This yields a purely bosonic action,
S½Φ�¼P

j

R ðdω=2πÞjωjj ~ΦjðωÞj2þ
R
dτV½ΦðτÞ�, where Φ ¼

ðΦ1;…;ΦNÞwith Φj ≡ ϕjðx ¼ 0Þ and Fourier components
~ΦjðωÞ. The Gaussian part describes dissipation by electron-
hole pair excitations in the leads, and the RAR-Kondo
interplay is encoded by the “pinning potential”

V½Φ� ¼ −
λffiffiffiffiffi
ξK

p
X
j

sinΦj −
J

4ξK

X
j≠k

cosΦj cosΦk: ð5Þ

We thus arrive at the quantum Brownian motion of a
fictitious particle with coordinates Φ in the N-dimensional
lattice corresponding to V½Φ�; see also Refs. [33,34].
Comparison to the N ¼ 3 field theory (see below) shows
that, up to an overall prefactor, the renormalized couplings
λ and J in Eq. (5) are effectively replaced by

ffiffiffiffiffiffiffiffi
ξKΓ

p
and

4ξK
ffiffiffiffiffiffi
TK

p
, respectively, when approaching the strong-

coupling regime. The relative importance of the two terms
in Eq. (5) is thus governed by δ ¼ ffiffiffiffiffiffiffiffiffiffiffi

Γ=TK

p
.

In the ground state, Φ is pinned to one of the minima of
V½Φ�. These minima occur for isotropic boson field
configurations, Φj ¼ Φmin, with sinðΦminÞ¼ δ=½2ðN−1Þ�.
For δ ¼ 0, the minima at Φmin ¼ 0 and Φmin ¼ π corre-
spond to the corner and center points, respectively, of a
body-centered hypercubic lattice. These points move in
opposite directions when increasing δ, such that we have
two interpenetrating cubic lattices. The closest distance
between corner and center points, see Fig. 2 for an
illustration, is given by d ¼ ffiffiffiffi

N
p ðπ − 2ΦminÞ, while the

distance between corners (or between centers) remains
d ¼ 2π. Perturbations around the ground state then come
from instanton transitions connecting different potential
minima. Following the arguments of Yi and Kane [33,34],
the scaling dimension y of the perturbation is directly
related to the distance d between the potential minima,
y ¼ d2=ð2π2Þ. For the leading (nearest-neighbor) term,
we arrive at Eq. (1) announced above. This perturbation
is RG irrelevant for δ < δc, with

δc ¼ 2ðN − 1Þ sin
�
π

2

�
1 −

ffiffiffiffi
2

N

r ��
: ð6Þ

Since yðδÞ is not an integer, all stable fixed points can be
classified as NFL states. As a consequence, we obtain a
stable line of NFL fixed points parametrized by 0 ≤ δ < δc.
For δ > δc, the perturbation becomes relevant and desta-
bilizes the fixed point line. Since this corresponds to
Γ > TK , we conclude that δc marks the phase transition
to the RAR regime.
Strong coupling approach.—It is reassuring that the

above results can be confirmed by an explicit strong-
coupling solution for N ¼ 3, which we briefly sketch next.
Encoding the Majorana triplet γ ¼ ðγ1; γ2; γ3Þ by a spin-
1=2 operator, S ¼ −ði=2Þγ × γ, plus another Majorana
fermion, b ¼ −2iγ1γ2γ3 [35], the RAR term in Eq. (3)
reads HA ¼ 2

ffiffiffi
2

p
iλbS · ρð0Þ, while the Kondo term

becomes HK ¼ JS · ½−ði=2Þηð0Þ × ηð0Þ�. We now recall
that without the RAR term, Heff reduces to the standard

FIG. 2 (color online). Lattice corresponding to the potential
minima of V½Φ� for N ¼ 3, with δ ¼ 0 (left) and δ ¼ δc (right).
With increasing δ, the center of the latticemoves along the diagonal
towards the corner point. The line of fixed points (corresponding
to the non-Fermi-liquid manifold for δ1 ¼ δ2 ¼ δ3) terminates
at δ ¼ δc.
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two-channel Kondo model, where the results of
Refs. [24,25,36–41] imply: (i) The η triplet of lead
Majoranas obeys twisted boundary conditions,
ηðxÞ → sgnðxÞηðxÞ. The sign change when passing the
impurity implies that an incoming electron is effectively
reflected as a hole with unit probability. This resembles
the RAR mechanism and rationalizes why the T ¼ 0
conductance in Eq. (2) coincides with the RAR result.
(ii) Screening processes, entangling the impurity spin with
η, are effectively described by writing S ¼ i

ffiffiffiffiffi
ξK

p
aηð0Þ,

where a is a newMajorana fermion capturing the remaining
unscreened degree of freedom. (iii) The leading irrelevant
operator corresponds to H0

K ¼ 2πTKξ
3=2
K aη1ð0Þη2ð0Þη3ð0Þ.

Includingnow theRAR term, λ ≠ 0, we combine thea and
b Majoranas to a conventional fermion, d¼ðaþibÞ= ffiffiffi

2
p

.
Using (ii) and bosonizing the lead fermions as above,
the low-energy form of the RAR contribution is
H0

A ¼ ð ffiffiffi
6

p
vFδ=πÞ½d†d − 1=2�∂xϕ0ð0Þ, with ϕ0 ¼ ðϕ1þ

ϕ2 þ ϕ3Þ=
ffiffiffi
3

p
. This expression is reminiscent of the

X-ray edge singularity problem [22], suggesting that the
marginal perturbation H0

A can be nonperturbatively inclu-
ded into H0 by a unitary transformation. Indeed, with
U ¼ eið2

ffiffi
6

p
δ=πÞðd†d−1=2Þϕ0ð0Þ, this is the case, where

UH0
KU

† generates eight different operators. The smallest
scaling dimension, yðδÞ ¼ ð3=2Þ½1 − δ=ð2πÞ�2, then identi-
fies the leading irrelevant operator [24,25]. This result is
exact for δ ≪ 1, where it matches Eq. (1). Stability requires
δ < δc ¼ 2πð1 − ffiffiffiffiffiffiffiffi

2=3
p Þ≃ 1.153, in good agreement to the

value predicted by Eq. (6), δc ≃ 1.137.
Discussion.—So far we have studied the isotropic setup

with Γj ¼ Γ. While anisotropic deviations in the exchange
couplings Jjk are RG irrelevant, deviations in the Γj convert
the fixed point line into an N-dimensional manifold para-
metrized by the δj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γj=TK

p
. In the quantum Brownian

motion approach, the Φ potential minima then move away
from isotropic configurations, and y ¼ yðδ1;…; δNÞ in
Eq. (1) has been obtained by computing the distance d
between nearest neighbor minima. The resulting NFL can
be probed in charge transport experiments. The conduct-
ance tensor is defined by GjkðTÞ ¼ −e∂Ij=∂μk, where the
jth lead has chemical potential μj, and the charge currents
Ij are oriented towards the island. Closely following the
technical steps detailed in Ref. [42], their steady-state
expectation values can be obtained from a Keldysh func-
tional integral, since the fixed point theory is represented
by a Gaussian action for the dual boson fields. Perturbation
theory in the leading irrevelant perturbation, of scaling
dimension (1), then determines the linear conductance
tensor for T ≪ TK as stated in Eq. (2). For δj ¼ δ, all
matrix elements AjkðδÞ in Eq. (2) are equal, and hence the
finite-T conductance corrections are completely isotropic.
Remarkably, all nonlocal conductances Gj≠k in Eq. (2)
exhibit the same power-law temperature dependence and
vanish at T ¼ 0, thereby providing a highly characteristic

signature to look for in experiments. Indeed, the RAR
scenario predictsGj≠k ¼ 0 at all T, while the NFLmanifold
can be identified by a finite-T nonlocal conductance
exhibiting power-law scaling.
Conclusions.—In this work we have proposed a (chal-

lenging but realistic) device hosting a stable manifold of
NFL states. By Josephson coupling a Majorana fermion
system to a superconductor, this suggests a novel route to a
first realization of this elusive behavior. Future theoretical
work should also study the full crossover from high to low
temperatures, e.g., using numerical RG simulations [43].
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