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We investigate theoretically high-harmonic generation (HHG) in bulk crystals exposed to intense
midinfrared lasers with photon energies smaller than the band gap. The two main mechanisms, interband
and intraband HHG, are explored. Our analysis indicates that the interband current neglected so far is the
dominant mechanism for HHG. Saddle point analysis in the Keldysh limit yields an intuitive picture of
interband HHG in solids similar to atomic HHG. Interband and intraband HHG exhibit a fundamentally
different wavelength dependence. This signature can be used to experimentally distinguish between the two
mechanisms in order to verify their importance.
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The interaction of intense laser fields with matter result-
ing in nonperturbative nonlinear dynamics has been exten-
sively studied in atomic and molecular gases over the last
two decades, revealing many new effects [1]. The most
prominent of these processes is high-harmonic generation
(HHG), which has resulted in the birth of attosecond science
[2] and in new ultrafast imaging methods, such as molecular
tomography [3] and spectroscopy [4]. Less attention has
been paid to corresponding processes in the condensed
matter phase, where the focus has been on laser micro-
machining and material modification [5,6]. Recent experi-
ments have demonstrated that intense laser solid interactions
offer a wide range of other phenomena and applications to
be explored [7–9], including HHG in solids [10–13].
The goal of this Letter is to understand the main

mechanism driving HHG in solids in the underresonant
limit, with midinfrared (mid-ir) laser frequencies smaller
than the band gap energy. HHG in solids can originate from
two channels, an intraband current arising from nonlinear
currents in the individual bands and an interband current
due to polarization buildup between the valence and
conduction band [14]. The question regarding which of
the two processes is dominant has not yet been settled.
Theoretically, HHG in solids has been investigated in the

single active electron approximation for 1D and 2D two-
band models, either by numerical [14,15] or analytical
approaches [16–18]. The influence of propagation effects
has also been investigated recently [18]. In the resonant
limit the full single electron, 1D, two-band, density matrix
equations have been solved numerically and both HHG
currents have been investigated [14]. All previous work on
HHG in the underresonant limit has not relied on a full
solution of the two band equations, and has exclusively
investigated the intraband current [15–18]; the interband
current has not been considered yet.
Our analysis is based on a solution of the three-

dimensional (3D) density matrix equations for a two-band

single active electron model similar to Ref. [14]. We solve
the full two-band density matrix equations numerically;
interband and intraband HHG are considered in the wave-
length range made accessible by the latest generation of
mid-ir high power lasers (2–6 μm). We also show how to
solve the two band equations analytically by generalizing
the Lewenstein approach for atomic HHG [19,20] to the
density matrix formalism and to HHG in solids. Our
analysis reveals the following main insights.
(i) Numerical results suggest interband HHG to be the

dominant channel over most of the investigated mid-ir
range, as long as the emitted harmonic frequency is above
the band gap. Saddle point integration in the Keldysh-
Lewenstein limit reveals the following mechanism
responsible for interband HHG: after the creation of an
electron-hole pair by tunnel ionization, electrons and
holes are accelerated and driven apart by the laser field.
When an electron and a hole reencounter each other,
recombination can occur resulting in the emission of a
harmonic photon; the wave vector at the time of recom-
bination determines the energy difference (gap) between
the electron-hole pair and therewith the emitted photon
energy. By comparison, in atoms an electron is ionized
and accelerated by the laser field and ultimately driven
back to the core, which is stationary due to its weight.
Upon recombination it releases its kinetic energy as a
high energy photon.
(ii) In the absence of dephasing, higher order returns

create a noisy continuumlike structure, which masks the
odd harmonic spectrum. Dephasing times around an optical
half-cycle (∼5 fs) are necessary to suppress higher returns
and to obtain agreement with the clean odd harmonic
structure observed in experiments [10,13]. This opens a
novel way for determining dephasing times without the
need of ultrashort laser sources.
(iii) For λ > 4 μm the wavelength dependence of intra-

band and interband currents exhibits different signs, which
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presents a strong signature allowing us to experimentally
settle the importance of the two contributions.
Our analysis of HHG in ZnO [10] is based on a 3D,

two-band, tight-binding model coupled to a laser field
FðtÞ ¼ x̂F0fðtÞ; the dipole approximation is used, as the
laser wave vector (k∥ẑ) is much smaller than the reciprocal
lattice vectors. Further, atomic units are used throughout
the Letter, unless stated otherwise. The laser is character-
ized by field amplitude fðtÞ, consisting of a temporal
Gaussian envelope with a FWHM equal to 10 cycles and
cosine carrier with frequency ω0.
The orientation of the reciprocal lattice of ZnO (wurtzite

structure) is chosen so that x̂∥Γ −M, ŷ∥Γ − K, and ẑ∥Γ −
A (optical axis). The valence band (holes), conduction band
(electrons), and band gap are determined by Ev ¼ −ΔEv,
Ec ¼ Eg þ ΔEc, and εg ¼ Ec − Ev ¼ Eg þ ΔEg, respec-
tively. We chose the valence band with the lightest mass
along the laser polarization direction yielding the largest
contribution to tunnel ionization. As there is some uncer-
tainty in the band parameters, as obtained from various
experimental and theoretical approaches, we have inves-
tigated HHG with bands obtained from two different
methods in Ref. [21]: density functional theory in the local
density approximation (LDA-ABINIT) and the nonlocal
empirical pseudopotential method (NL-EPM). All conclu-
sions drawn from our analysis are confirmed by both band
models. Here, the results for the LDA-ABINIT are shown.
The complete 3D band in the first Brillouin zone (BZ) is
approximated as the sum over the three 1D bands.
Intense laser solid interaction is modeled using the two

level density matrix equations [22]:

_πðK; tÞ ¼ −
πðK; tÞ
T2

− iΩðK; tÞwðK; tÞe−iSðK;tÞ; ð1aÞ

_nmðK; tÞ ¼ ismΩ�ðK; tÞπðK; tÞeiSðK;tÞ þ c:c:; ð1bÞ

where nm is the the valence (m ¼ v) and conduction
(m ¼ c) band population, and w ¼ nv − nc is the popula-
tion difference. Initially all electrons are in the valence
band; sm ¼ −1; 1 for m ¼ v; c, respectively. The crystal
momentum k has been transformed into a frame moving
with the vector potential −dA=dt ¼ F, K ¼ k −AðtÞ. As
a result, the first Brillouin zone is also shifted to
BZ ¼ BZ −AðtÞ. Further, T2 accounts for dephasing,
SðK; tÞ ¼ R

t
−∞ εg½KþAðt0Þ�dt0 is the classical action,

ΩðK; tÞ ¼ FðtÞd½KþAðtÞ� is the Rabi frequency, and
dðkÞ ¼ i

R
d3xu�v;kðxÞ∇kuc;kðxÞ is the transition dipole

moment, with um;k the periodic part of the Bloch function.
The numerical value of the dipole moment at the Γ point,
d ¼ ð3.46; 3.46; 3.94Þ, has been extracted from tabulated
data [22], and its k dependence is neglected in our analysis.
Finally π determines the polarization by

pðK; tÞ ¼ d½KþAðtÞ�πðK; tÞeiSðK;tÞ þ c:c:: ð2Þ

For the integration of Eqs. (1) for linearly polarized pulses
we used 600 points (full BZ) along Γ −M and 200 points
(half BZ) along each of the other two directions.
Computation time for a laser wavelength λ ¼ 3.25 μm
on an Intel Xeon E5 (2.3 GHz) is 2.5 days.
The above equations are identical to the two-band

semiconductor equations [31] in the single electron limit.
The main difference is the frame transformation, which
allows more efficient numerical integration, as it removes
differentiation ∇k from the standard two-band equations;
it also allows generalization of the analytical tools devel-
oped for atomic HHG [19] to solids. A derivation and the
connection between the Schrödinger [19,20] and the
density matrix approach is given in the Supplemental
Material [22].
Finally, HHG in solids is determined by an intraband jra

and interband jer contribution, which are, respectively,
given by [14,31]

jraðtÞ ¼
X

m¼c;v

Z

BZ
vm½KþAðtÞ�nmðK; tÞd3K; ð3aÞ

jerðtÞ ¼
d
dt

Z

BZ
pðK; tÞd3K; ð3bÞ

where the band velocity is defined by vmðkÞ ¼ ∇kEmðkÞ.
The high-harmonic spectrum is obtained from the Fourier
transform (FT) of jt ¼ jra þ jer, as jFTfjtgj2.
In order to better understand the physical processes

driving intraband and interband HHG in solids, it is useful
to explore Eqs. (1) by using the Keldysh approximation
[20] wðtÞ ≈ 1 in Eq. (1a). This decouples Eqs. (1) so that
they can be formally integrated. Inserting the result into
Eqs. (3), we find

jraðωÞ ¼
X

m¼c;v

sm

Z

BZ
d3kvmðkÞ

×
Z

∞

−∞
dte−iωt

Z
t

−∞
dt0Fðt0Þdðκt0 Þ

×
Z

t0

−∞
dt00Fðt00Þd�ðκt00 Þe−iSðk;t00;t0Þ−ðt0−t00Þ=T2 þ c:c:;

ð4aÞ

jerðωÞ ¼ ω

Z

BZ
d3kdðkÞ

Z
∞

−∞
dte−iωt

Z
t

−∞
dt0Fðt0Þd�ðκt0 Þ

× e−iSðk;t0;tÞ−ðt−t0Þ=T2 þ c:c:; ð4bÞ

where κt0 ¼ kþAðt0Þ −AðtÞ. Further, we have trans-
formed the crystal momentum back to the initial frame
k ¼ KþAðtÞ, and Sðk; t0; tÞ ¼ R

t
t0 εgðκτÞdτ. Note that

deriving Eqs. (4) directly from the Schrödinger equation
would yield the same result except for the dephasing term.
For the range of fields F0 ≤ 0.008, explored in experiments
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[10], the harmonic spectra obtained from Eqs. (4) and by
using the full two-band equations (1) are practically
identical.
We focus first on understanding the physics driving

interband HHG, which turns out to be the dominant process
in the numerical results below. The mechanism driving
intraband HHG is only briefly touched upon. Following the
semiclassical method developed for atomic HHG [19],
saddle point integration with regard to the three integrals
d3k; dt0; dt in Eq. (4) gives three saddle point conditions

∇kS ¼ Δxc − Δxv ¼ 0; ð5aÞ
dS
dt0

¼ εg½k −AðtÞ þAðt0Þ� ¼ 0; ð5bÞ

dS
dt

¼ εgðkÞ ¼ ω: ð5cÞ

A complete evaluation of the saddle point integrals can be
done using the methods employed in Refs. [17,19,20].
Here, we focus on the physical picture revealed by the
saddle point equations. In Eq. (5a), Δxm ¼ R

t
t0 vmdt

00 ¼
xmðtÞ − xmðt0Þ is the distance propagated by the electron
(hole) in the conduction (valence) band (m ¼ c; v) between
the time of birth t0 and the time of observation t; the
velocity is vm ¼ ∇kEm. The first equation states that HHG
takes place only when electrons and holes reencounter each
other, after having been accelerated and separated by the
laser field after their birth through ionization. In contrast to
HHG in gases, where the parent ion is too heavy to move,
crystal hole dynamics is relevant, as hole and electron
masses are comparable. Similar to HHG in atoms, Eq. (5b)
states that electrons are born with zero momentum at time t0
[19], k ¼ Aðt ¼ t0Þ −Aðt0Þ ¼ 0. The finite band gap
energy results in a complex birth time, which is responsible
for tunnel ionization. Finally, Eq. (5c) represents conser-
vation of energy: the electron-hole pair recombines and
emits a photon ω with energy equal to the band gap at the
momentum of recombination k ¼ AðtÞ −Aðt0Þ. As a
result, the cutoff for interband HHG in a two-band model
is limited to the maximum band gap. Higher harmonics are
possible, but require excitation to a higher band.
Intraband HHG is driven by two mechanisms. First,

Bloch oscillations are due to the anharmonic part of the
band structure resulting in a nonlinear band velocity
vmðk ¼ AðtÞ −Aðt0ÞÞ and therewith, a nonlinear current
[15–17]. The second contribution has been ignored so far.
The intraband current also contains a recollisionlike con-
tribution that depends on the polarization buildup between
electrons and holes due to the exponential term containing
S in Eq. (4a). Comparison of the two contributions is
difficult, as they are closely intertwined.
Our analysis of HHG starts with a comparison of

interband (blue) and intraband (red) HHG for dephasing
times T2 ¼ ∞; T0=2; T0=4 [Figs. 1(a)–1(c)]; T0 ¼ 2π=ω0

is the laser oscillation period. Nonperturbative HHG takes
place above the dashed line (N ¼ 9), indicating the mini-
mum band gap at the center of the Brillouin zone. Both
contributions show a plateau in the nonperturbative regime,
whereas in experiments the harmonic yield drops with
increasing harmonic order. This difference is due to the
neglect of propagation effects, in particular reabsorption of
harmonic photons, which increases with growing harmonic
orders. For all dephasing times in Fig. 1 the interband
current dominates the intraband contribution in the plateau;
in the perturbative regime of HHG, below the dashed line,
the two contributions become comparable with intraband
HHG being slightly stronger. The calculation was repeated
for a range of field strengths used in experiments [10].
Interband HHG is always dominant in the plateau region by
at least 2 orders of magnitude.
Surprisingly, both spectra in Fig. 1(a) are very noisy and

do not show a clear odd harmonics structure; only close to
the cutoff can odd harmonics be seen. The lowest odd
harmonic still visible is in agreement with the return energy
above which higher returns cannot occur, as obtained from
a solution of Eqs. (5). For harmonics below this energy
interference of multiple returns washes out the odd har-
monic structure. In Figs. 1(b) and 1(c) the spectra have been
plotted for T2 ¼ T0=2; T0=4. The odd harmonic spectrum
starts to manifest for dephasing times of the order of a half
cycle, see Fig. 1(b), as higher returns are suppressed. For
even shorter dephasing times in Fig. 1(c), the signal to
background ratio is further improved and a clean harmonic
spectrum emerges.
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FIG. 1 (color online). Harmonic spectrum from interband
(jFTfjergj2, blue line) and intraband (jFTfjragj2, red line) currents
for field strength F0 ¼ 0.003; we use a temporal Gaussian
envelope with a FWHM equal to 10 cycles and cosine carrier
with frequency ω0 ¼ 0.014, corresponding to a laser period
T0 ¼ 2π=ω0 ¼ 10.9 fs; (a),(b),(c) show dephasing times of
T2 ¼ ∞; T0=2; T0=4, respectively. The dashed black vertical
lines represent the (minimum) band gap at the center of the
Brillouin zone.
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In atomic HHG, propagation effects introducing a phase
mismatch between the fundamental laser frequency and its
harmonics can also contribute to attenuating second and
higher returns [32]. This is not the case in solids, as absorption
dominates phase mismatch for above band gap plateau
harmonics [18], leaving dephasing as the only mechanism
for obtaining a clean harmonic spectrum in agreement with
experiments; this has important ramifications.
The dephasing time for which numerical and experi-

mental peak-to-valley ratios of harmonics become compa-
rable gives an upper limit of T2. We find that for T2 ≈ 4 fs
the difference between harmonic peaks and valleys is
around 1 to 1.5 orders of magnitude, comparable to what
was found in experiments [10]. Typical dephasing times in
semiconductors were found to be in the 15–50 fs range by
photon echo experiments [33,34]; however, in these experi-
ments only low energy electrons around the Γ point are
probed. Our analysis indicates that, in intense laser fields,
dephasing can become even more efficient due to a
population of the high crystal momentum (k) states in
the Brillouin zone. An estimate of dephasing times at
higher electron energies can be obtained from electron
diffraction experiments. The measured scattering length for
a 6 eV electron is generally on the order of 100 Å,
corresponding to a dephasing time of about 5 fs [35].
This estimate supports our findings.
In Fig. 2, we investigate how the interband (full lines)

and intraband (dashed lines) contributions scale with laser

wavelength λ0 for T2 ¼ 2.7 fs. When the wavelength is
reduced, at some point a given harmonic will move beyond
the plateau into the cutoff region and the yield will drop. On
the other hand, for increasing wavelength a given harmonic
order will drop below the band gap and move from the
nonperturbative into the perturbative realm. We have
plotted each harmonic only between these two limits—
as long as it stays in the plateau region.
The interband contribution drops exponentially with

increasing wavelength. This can be attributed mostly to
the dephasing term in Eq. (4b); the harmonic yield drops by
4 orders of magnitude over the displayed wavelength range
for T2 ¼ 2.7 fs (full lines). By comparison, interband HHG
for T2 ¼ ∞ (full lines) drops slowly and fluctuates within
an order of magnitude. This behavior comes from an
increase in the excursion time t − t0 with growing λ. On
the one hand, quantum spreading of 3D electron and hole
wave packets is enhanced, which reduces recollision prob-
ability. On the other hand, phase and interference between
multiple returns is modified resulting in the observed
fluctuations. Finally, the wavelength dependence of the
intraband yield is more complex. It most likely results from
a mixing of the two different mechanisms identified above
and can even increase for longer wavelengths.
For the chosen dephasing time, interband HHG clearly

dominates over the range of nonperturbative HHG; some
harmonics become comparable at the long wavelength end
where the harmonic energy is comparable to the band gap.
The calculations have been repeated for field strengths
between 0.002 ≤ F0 ≤ 0.006 and they show a very similar
picture. For shorter dephasing times, intraband HHG gains
more weight and the points where interband and intraband
HHG intersect move slowly to shorter wavelengths; how-
ever, down to T2 ≈ 1 fs, interband HHG remains dominant
over most of the displayed wavelength regime.
Dephasing times below a femtosecond are unrealistically

short and therefore our calculations indicate the dominance
of interband HHG in the nonperturbative part of the high
harmonics spectrum over most of the investigated mid-ir
range. However, as our model relies on approximations,
this must ultimately be settled by experiment. Figure 2
reveals one suggestion of how this can be done. The
opposite gradients of interband and intraband yield at
longer wavelengths present a strong signature for exper-
imentally discerning the two mechanisms.
Finally, we find that interband and intraband HHG show

the same dependence on elliptical polarization and cannot
be distinguished by ellipticity. The ellipticity dependence
of HHG in solids is weaker than in gases. At an ellipticity of
0.25, the harmonic intensity drops less than 1 order of
magnitude as compared to linear polarization, whereas
atomic HHG is already suppressed at lower ellipticities.
However, we find a somewhat stronger drop of≈2–3 orders
of magnitude than the factor of 5 measured in experiment
for an ellipticity of 0.5 [10]. The difference might come
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from the neglect of electron-hole attraction, which weakens
the effect of ellipticity.
In conclusion, the results presented in this work suggest

that it will be possible to apply the methods of gas-phase
high-harmonic spectroscopy to solids. For instance, we
note that the spectral phase of the high-harmonics is
determined by the k-dependent band gap. By perturbing
the generation process with a two color experiment—just
like in atomic HHG [36]—it is possible to measure this
phase, from which ultimately the band structure of the
crystal can be reconstructed. To date this has been possible
only with angle resolved photoemission experiments. One
can also envision a new class of solid state devices based on
the methods developed for atomic gas recollision physics,
but technically much easier to implement [37]. One
example is the direct measurement of petahertz oscillations
of a laser field [38], which was recently demonstrated with
atomic HHG.
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