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We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can
undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias
force induces Bloch oscillations, causing amplitude and phase modulation of the lattice which resonantly
modifies the site-to-site tunneling. For the right choice of parameters a net atomic current is generated. The
transport velocity can be oriented oppositely to the bias force, with its amplitude and direction controlled by
the detuning between the pump laser and the cavity. The transport can also be enhanced through imbalanced
pumping of the two counterpropagating running wave cavity modes. Our results add to the cold atoms
quantum simulation toolbox, with implications for quantum sensing and metrology.
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Periodic potentials play a prominent role in condensed
matter systems, and highlight some of the fundamental
differences between classical and quantum dynamics: a
quantum particle undergoes strong scattering when its de
Broglie wavelength satisfies the lattice Bragg condition,
and can undergo tunneling through classically forbidden
regions between sites. Furthermore, if a constant bias force
F is applied a quantum particle is not transported in the
direction of the force but instead performs Bloch oscilla-
tions with no net displacement at a frequency ωB ¼ Fd=ℏ,
where d is the lattice period [1]. Indeed, transport of
electrons in lattices with an applied dc electric field only
occurs as a result of dephasing processes such as scattering
from lattice defects.
Cold atoms present an especially attractive platform for

studies of lattice systems because all of the critical
parameters governing the dynamics are tunable in real
time. In particular, it is possible to control tunneling and
transport by modulating the potential in time. Transport in
statistical phase space has been demonstrated in pulsed
lattices, realizing the quantum delta-kicked rotor [2] and
leading to dynamical localization [3] and chaos-assisted
tunneling [4]. Directed transport has been observed through
ratchet effects in driven dissipative [5] and Hamiltonian
lattices [6]. Tunneling control has been achieved through
harmonic shaking of lattices without [7–9] and with [10,11]
a bias force. It is thus possible to control the superfluid-
Mott insulator transition [12,13] and to induce macroscopic
delocalization [14] and transport [15] of Bloch oscillating
atoms. Recently, photon-assisted tunneling [16] has been
studied in strongly correlated quantum gases [17,18], and
artificial vector gauge potentials have been generated [19].
What is missing in these schemes is backaction by the

atoms upon the electromagnetic fields generating the
lattice. Contrast this with the strong backaction effects

seen in solids, such as lattice-phonon mediated Cooper
pairing and the Meissner effect in superconductors. In
principle, an optically trapped atomic gas causes refraction
of the lattice light, but extremely low densities render this
negligible under normal conditions. An exception is inside
a high finesse optical cavity, where the multipass effect can
increase the effective optical path length by several orders
of magnitude [20], leading to a shift of the cavity resonance
that depends on the density distribution of the atoms. If this
shift is on the order of the cavity linewidth, the number of
cavity photons is modified by the atomic wave function
and vice versa. This backaction leads to richer dynamics
than is otherwise possible [21–23], such as collective
atomic recoil lasing [24–26] and single-photon bistability
[27,28]. In this context the system can be considered an
application of cavity optomechanics [29–31], where col-
lective excitations of the atoms play the role of material
oscillators which are dispersively coupled to one or more
cavity modes [32].
It has been shown theoretically that such systems allow

continuous, nondestructive measurements of atomic Bloch
oscillations through detection of intensity and phase
modulation of the transmitted light [33,34]. Despite the
backaction on the lattice effected by the atoms, Bloch’s
acceleration theorem remains valid, and this modulation of
the lattice potential occurs predominantly at the expected
Bloch oscillation frequency (i.e., calculated for an equiv-
alent static tilted lattice) and its harmonics. It is therefore
natural to ask whether this dynamical modulation of the
lattice can drive the renormalization of atomic tunneling
which is now familiar from experiments with free-space
lattices. The central result of this Letter is to show that
backaction-driven modulation of an intracavity lattice can
lead to a directed atomic current with tunable magnitude
and direction.
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To see how this happens, we consider a Bose-Einstein
condensate trapped along one leg of an optical ring cavity,
as shown schematically in Fig. 1. Transverse degrees of
freedom are assumed to be frozen out by external confine-
ment, effectively reducing the dynamics to a single spatial
dimension z. The two running-wave modes of the cavity are
pumped through a lossless input-output coupling mirror by
a laser with frequency ω0 ¼ ckr, where c is the speed of
light in vacuum and ℏkr is the recoil momentum. The light
is detuned far enough from the atomic resonance that the
excited state of the atoms can be adiabatically eliminated.
For simplicity, we also ignore atomic collisions, which may
be negligible in an experiment either because the scattering
cross section is naturally small [14], or has been made small
through the use of a tunable Feshbach resonance [15]. In a
frame rotating at ω0, and in the dipole and rotating wave
approximations, the Hamiltonian is then given by

Ĥ ¼ −ℏ
X

k¼�
½Δcâ

†
kâk þ iðη�kâk − ηkâ

†
kÞ�

þ
Z

dzψ̂†
�
−
ℏ2

2m
∂2
z þ ℏU0Ê

†Ê − Fz

�
ψ̂ ; ð1Þ

where the annihilation operators âþ and â− acting on the
cavity modes, and ψ̂ðzÞ acting on the atomic field, all obey
bosonic commutation relations. Δc ¼ ω0 − ωc is the detun-
ing of the driving laser from the bare cavity resonance
frequency ωc, and ηk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Jkκ=2

p
for an incident flux of Jk

photons per unit time and a photon number decay rate of
2κhâ†kâki for each mode. The dimensionless positive-
frequency component of the electric field is given by
Êðz; tÞ ¼ âþ expðikrzÞ þ â− expð−ikrzÞ. The depth of the
lattice is proportional to U0, which is a function of
the atomic dipole moment, the cavity mode volume, and
the detuning from atomic resonance, and F < 0 is the
uniform and constant bias force.
We can alternatively express the cavity modes in a

standing wave basis, described by the annihilation operators
âc ¼ ðâþ þ â−Þ=

ffiffiffi
2

p
and âs ¼ iðâþ − â−Þ=

ffiffiffi
2

p
, where the

c (s) mode has cosine (sine) spatial symmetry. In this basis
the interaction term in the second line of (1) takes the form

Ĥi ¼ ℏU0½n̂ N̂þðn̂c − n̂sÞC þ ðâ†câs þ â†s âcÞS�; ð2Þ

where n̂ ¼ n̂c þ n̂s ¼ â†câc þ â†s âs is the total number of
photons, N̂ is the number of atoms in the condensate, and
C½ψ̂ � ¼ hcosð2krzÞi and S½ψ̂ � ¼ hsinð2krzÞi depend implic-
itly on the atomic state. We will be most interested in cases
where hn̂ci ≫ hn̂si, so that the intracavity lattice has
predominantly cosine symmetry. Then the quantity C char-
acterizes the degree of spatial ordering of the atoms and S is
related to the coherence between the lowest and first excited
Bloch bands [33]. Viewed in the optomechanical picture, C
and S represent the occupations of the lowest momentum
modes of the condensate, with S ¼ 0 in the absence of
Bloch oscillations or a symmetry-breaking optical bistability
[35]. However, even if we choose the ηk to initially give
S ¼ 0, during Bloch oscillations S becomes nonzero and the
intensity and spatial phase of the lattice vary dynamically.
To solve the full nonlinear dynamics we write the

Heisenberg-Langevin equations, iℏ∂tâμ ¼ ½âμ; Ĥ� −
iℏκâμ for μ ¼ c, s and iℏ∂tψ̂ ¼ ½ψ̂ ; Ĥ�, ignoring all input
noise operators, whose means are zero, and neglecting atom
losses over the time scales of interest so that N ¼ hN̂i is
constant. Letting αμ ¼ hâμi and ψ ¼ hψ̂i= ffiffiffiffi

N
p

, and factor-
ing the expectation values of operator products, we obtain
the mean-field equations,

∂tαc ¼ −ðκ − iΔþÞαc − iU0NSαs þ ηc; ð3Þ

∂tαs ¼ −ðκ − iΔ−Þαs − iU0NSαc þ ηs; ð4Þ

iℏ∂tψ ¼
�
−
ℏ2

2m
∂2
z þ ℏU0jEðzÞj2 − Fz

�
ψ : ð5Þ

Here, Δ� ¼ ðΔc − U0NÞ ∓ U0NC are the effective detun-
ings, and Eðz; tÞ ¼ hÊðz; tÞi is the dimensionless electric
field. The standing-wave modes are pumped at rates ηc ¼
ðηþ þ η−Þ=

ffiffiffi
2

p
and ηs ¼ iðηþ − η−Þ=

ffiffiffi
2

p
. Again we see that

the lattice modulation is driven by changes in C and S
during Bloch oscillations—C drives amplitude modulation
through changes of the Stark detuning Δþ of the dominant
cosine mode, and S induces shaking of the lattice (i.e.,
phase modulation) through coherent coupling of the sine
and cosine modes.
In Fig. 2, we show the dynamics for 88Sr atoms

accelerating under gravity in a 689 nm ring cavity lattice
(i.e., lattice spacing d ¼ π=kr ¼ 344.5 nm). In this case
we have ωB ¼ 2π × 745 Hz, and the recoil frequency
ωr ≡ ℏk2r=ð2mÞ ¼ 2π × 4.78 kHz. Here we choose
U0N ¼ −κ corresponding to the onset of collective strong
coupling, and compare the dynamics with κ ¼ 2π × 1 kHz
and 1 MHz. Bloch oscillations induce lattice amplitude
modulation of ∼10% peak to peak in both cases, with
negligible shaking. The fast oscillations on top of the main
modulation observed for larger κ were identified previ-
ously, and are predominantly higher harmonics of ωB
associated with the nonlinearity of the coupled atom-light

FIG. 1 (color online). An optical lattice is created by pumping
the two running wave modes of a ring cavity. A trapped Bose-
Einstein condensate (yellow ellipse) undergoes Bloch oscillations
due to the bias force F. Atomic backaction leads to lattice
amplitude and phase modulation (AM and ΦM, respectively),
which in turn induces coherent directed transport of the condensate.
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system [34]. In the case of small κ these features are outside
the cavity bandwidth and therefore suppressed.
Despite similar modulation depths for small and large κ

in Fig. 2, transport is only observed when κ is on the order
of ωB. This is because κ is the relaxation rate for the light
field, which in turn sets the relative lag between the
backaction-induced lattice modulation and the atomic
Bloch oscillation. When κ ≫ ωB the light adapts almost
instantaneously to the atomic motion at ωB and there is
consequently no delay between the two; when κ ∼ ωB the
light is not able to adiabatically follow the atoms’ motion
and a phase lag develops, as evident in Fig. 2(a). The effect
of such a delay on transport in externally driven free-space
lattices is well known [15,36], but in such cases the phase
difference is a controlled parameter. In a cavity, on the other
hand, the phase difference comes about self-consistently
according to Eqs. (3)–(5).
Neglecting for the moment the origin of the modulation

in Fig. 2, the resulting transport is similar to that in a free-
space optical lattice under modulation of the lattice
amplitude or phase, or of the bias force F [37–39].
Physically, transport occurs because the phase lag ensures
that the duration for which the lattice is shallower, and
therefore tunneling more effective, overlaps more with the
motion in one direction than in the other. By breaking this
symmetry, the band center is effectively shifted from zero
quasimomentum and a net motion occurs [40]. The trans-
port velocity is given by the group velocity vg ¼
ℏ−1∂EðqÞ=∂q averaged over a full Bloch oscillation, where
EðqÞ is the dispersion relation of the atoms in the untilted
lattice, and q is the quasimomentum [36]. If the phase lag is
zero, vg averages to zero by the symmetry of EðqÞ about
q ¼ 0, but for a finite lag the lattice modulation falls out of
sync with the atoms, leading to transport at velocity

vt ¼ −dT1 sinϕ; ð6Þ
where T1 is the tunneling rate between neighboring sites,
which is proportional to the modulation depth, and ϕ is the
lag between the modulation and the Bloch oscillation. For

initial site-to-site coherence, such as we consider here, the
result is directed transport superposed on the underlying
Bloch oscillation [15]. Given initially random site-to-site
phases, one instead observes spatial spreading of the
atoms [10,14].
We have extended the above theory for free-space

lattices to include the self-consistent optomechanical
effects of a cavity. Under the approximation of nearest-
neighbor tunneling, which is valid for modulation at ωB, we
find analytic expressions for T1 and ϕ, which are given in
the Supplemental Material [40]. The analytic theory is in
excellent agreement with the numerical simulations. The
magnitude and direction of transport depend on the cavity
pumping parameters Δc and η�, as well as the Stark shift
U0N. We find that jvtj increases quadratically withU0N for
small values, and is maximized for intermediate lattice
depths (∼3ℏωr for the parameters of Fig. 2). In very
shallow lattices, tunneling is strong but the modulation
depth is reduced in proportion to the trap depth; in deep
lattices tunneling is suppressed and the modulation depth is
reduced due to flattening of the Bloch bands. The depend-
ence on detuning Δc is shown in Fig. 3. For balanced
pumping, with ηþ ¼ η− (ηs ¼ 0), the transport exhibits a
dispersive shape around the Stark-shifted cavity resonance
(Δþ ¼ 0). This is because modulation of C during the
Bloch oscillation effectively dithers the detuning of the
cosine cavity mode, as described by Eq. (3). The result is a
modulation amplitude which approximately follows the
derivative of the Lorentzian cavity response. The modula-
tion phase also changes across the resonance, adding to the
detailed shape we observe. Again, these effects are well
captured by the analytic tight-binding theory. We note in
passing that for larger blue detunings, Raman transitions of
the type studied in [41] can become resonant, leading to
Rabi oscillations between condensate momentum states
and tunneling into higher bands.
Because the effects we have described so far are

dominated by lattice amplitude modulation, they are
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FIG. 2 (color online). Backaction-induced lattice modulation
and atomic transport. Only the cosine cavity mode was pumped,
with U0 ¼ −2π × 1 Hz and Δc ¼ U0N ¼ −κ. (a) Lattice depth
in units of the recoil energy Er ¼ ℏωr as a function of time during
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qualitatively present in standing wave cavities as well.
However, only in ring cavities is it possible to pump the
counterpropagating running-wave modes with independent
amplitudes, corresponding to direct pumping of the sine
mode (not to be confused with a translation of the lattice,
such as occurs during lattice shaking). In Fig. 3(a) we
observe a strong enhancement of uphill transport around
Δc ¼ U0N, when ηþ ¼ 2η−, even though the initial trap
depth is the same as before. As seen in Figs. 3(b) and 3(c),
both the amplitude and phase modulations are increased.
Imbalanced pumping increases population of the cavity
sine mode, thereby enhancing the backaction-induced
lattice shaking. At first it may be surprising that this effect
is only pronounced around Δc ¼ U0N, but the effective
detuning of the cosine mode Δþ becomes positive here,
corresponding to the regime of cavity heating [42], where
linear stability analysis for F ¼ 0 predicts unstable dynam-
ics [43]. In contrast, near the positive transport peak one
finds that both the sine and cosine modes operate in the
cavity cooling regime with Δ� negative, where the F ¼ 0
dynamics are damped.
The effect of imbalanced pumping is investigated further

in Fig. 4, where we vary the ratio ηþ=η−, forΔc ¼ U0N and
fixed initial trap depth. Phase modulation is more sensitive
than amplitude modulation to small pump asymmetries. We
observe that the transport minima are slightly offset from
the condition of balanced pumping; the actual minima
occur where the time-averaged value of S over a full Bloch
oscillation period vanishes. This is due to weak pumping of
the sine mode balancing the atomic dynamics. Simulations
at strong imbalances reveal the existence of numerous types
of instability. These include Landau-Zener tunneling,
symmetry-breaking bistability [35], and collective excita-
tions of the condensate [43], and will be the subject of a
future work [44]. Near the onset of instability, the depths of
amplitude and phase modulation as defined here become
comparable; recall Figs. 3(b) and 3(c). However, we note
that AM is more efficient at driving transport when each
type of applied modulation is considered in isolation for
free-space lattices. Transport appears to be dominated by
amplitude modulation in all of the parameter regimes we
have studied, with a fourfold increase in jvtj possible
through imbalanced pumping of the cavity.

We can now compare our results to experiments in driven
free-space lattices. Combined Bloch oscillations and trans-
port have been observed by imaging atoms both in situ and in
time of flight [14,15]. For intracavity lattices, one could
detect the Bloch oscillations nondestructively in the trans-
mitted light [33,34]. In fact, transport has its own unique
signature: for the case shown in Fig. 2 we find a factor of two
imbalance between the spectral power of the cavity fields in
the sidebands at �ωB. Indeed, transport up (down) in our
system is analogous to sideband-resolved cavity optome-
chanical heating (cooling) [45,46]. For a pump detuning
Δþ ∼þωB, the −ωB sideband is near resonance with the
cavity and therefore dominates over the further detunedþωB
sideband; the atoms undergo energy conserving Raman
transitions up the Wannier-Stark ladder [39] of states sepa-
rated in energy by steps of ℏωB. Conversely, a red-detuned
pump with Δþ ∼ −ωB leads to a dominant þωB sideband,
with the atoms descending the Wannier-Stark ladder.
An important feature of the backaction-driven dynamics

is that ωB appears to remain unchanged from its value in a
static lattice. Because the lattice in a ring cavity can
accelerate, this does not have to be the case [47]. That
the system oscillates at Fd=ℏ is critical for applications in
metrology and sensing, where the modulation frequency is
taken as a measure of the force [33]. It also implies that
backaction will not induce so-called super Bloch oscilla-
tions [15] because these occur when the lattice modulation
is detuned from ωB. It is worth noting that although the
backaction-driven ΦM is much smaller than what has been
applied in free-space experiments [48], the values of AM
we observe are similar to what was applied in Refs. [38,39].
Finally, we note that our tight-binding theory predicts that
in the absence of initial site-to-site coherence, the back-
action-induced modulation will decay. This is because C
and S become constant, cutting off the modulation of the
lattice according to Eq. (2).
In conclusion, we have shown that optomechanical effects

lead to qualitatively new dynamics for a Bose-Einstein
condensate undergoing Bloch oscillations in a high finesse
optical cavity. As the condensate quasimomentum samples
the first Brillouin zone, the optical lattice depth and position
are dynamically modulated, even as the Bloch frequency
itself is unchanged. When the cavity damping rate is on the
order of the Bloch oscillation frequency, coherent directed
transport of the condensate can be observed. Asymmetric
pumping of the running wave cavity modes enhances the
transport, and in extreme cases makes the system dynami-
cally unstable. Our results extend the study of coherent
control of tunneling to include optomechanical lattice
excitations. They are relevant to measurements of Bloch
oscillations in cavities and other nondestructive atomic
probes, and also more generally to attempts to realize neutral
atom quantum simulators, where backaction upon electro-
magnetic fields is significant.
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Note added.—Since the preparation of this manuscript, we
have become aware of the experimental observation of
transport of a Bloch oscillating Bose-Einstein condensate
in a high-finesse standing wave cavity [49].
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