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We present an efficient and robust method for the reconstruction of photon number distributions by using
solely thermal noise as a probe. The method uses a minimal number of precalibrated quantum devices;
only one on-off single-photon detector is sufficient. The feasibility of the method is demonstrated by the
experimental inference of single-photon, thermal. and two-photon states. The method is stable to
experimental imperfections and provides a direct, user-friendly quantum diagnostics tool.
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Introduction.—Ultimately, quantum tomography is the
most comprehensive tool available for a researcher. Indeed,
by inferring the quantum state we have a possibility of
predicting results of any possible measurement. From its
birth in 1989 [1], quantum tomography has made enormous
progress [2,3]. Now even such fragile quantum objects as
“Schrödinger cats” made of photons are diagnosed and
reconstructed [4]. However, the most precise tool requires
the most precise tuning. Generally, quantum reconstruction
schemes require precise calibration of the measurement
setup together with minimization of noise and losses. For
example, one of the most established tomographic tools for
electromagnetic field states, quantum homodyne tomogra-
phy, requires more than 50% overall detection efficiency
[5]. Also, rather low respective phase noise of the probe and
signal fields is essential for the scheme to work.
In this Letter we present a quantum tomography scheme

that actually relies on noise to collect data sufficient for
state reconstruction. Furthermore, data are collected by
using merely one on-off detector, where the ability to
distinguish the number of input photons is not required.
The essence of the scheme is simple: the signal mixed
with thermal noise impinges on the detector. Varying the
intensity of the noise, we can build up the set of measure-
ments sufficient for the inference of diagonal elements of
the signal density matrix. The reconstruction can be done
even for quite low detection efficiencies on the level of
10%. An important feature of our scheme is the minimi-
zation of resources. Even the simplest of conventional
schemes using one on-off avalanche photodetector still
requires a number of precalibrated absorbers or beam
splitters [6]. With increasing signal intensity, this number
increases dramatically. Schemes based on time multiplex-
ing or space multiplexing similarly involve a considerable
amount of precalibration [7,8]. Additionally, they assume
that the signal does not contain photon number contribu-
tions beyond the number of multiplexing channels.

In contrast, in our scheme the detector itself can be used
to determine the temperature of the noise, thus avoiding
the necessity to have any other precalibrated devices.
Moreover, there is no restriction to the low dimensional
Hilbert space corresponding to the low input photon
number predefined by the detector. Our scheme can be
generalized to enable a complete reconstruction of the
signal state density matrix by mixing the signal with the
coherent field.
The scheme.—We first demonstrate the feasibility of our

scheme in its simplest configuration. The goal is to infer
diagonal elements of the signal density matrix, ρmm, in the
Fock-state basis jmi. The probability of registering a signal
is generally given as

pj ¼
XN
m¼0

Πjmρmm; ð1Þ

where the elements Πjm ¼ hmjΠjjmi are related to the jth
element of positive valued operator measure (POVM), Πj,
which describes a measurement performed on the signal.
N þ 1 is the dimension of the subspace of all possible
signal states. We have only one on-off detector and we use
different thermal probe states to generate different POVM
elements. Let us suppose that the probe completely overlaps
with the signal at the detector, which has a detector efficiency
η. If we now register “no click” events, we obtain POVM
operator matrix elements for such a measurement [9,10],

Πjm ¼ yjð1 − yjηÞm; ð2Þ

where yj ¼ 1=ð1þ ηnjÞ and nj is the mean photon
number of the probe thermal state (TS). The matrix with
elements ðxjÞm is always nondegenerate for N þ 1 differ-
ent values of xj andm ¼ 0; 1;…; N (it is the Vandermonde
matrix [11]). Since we can represent the system (1) as
pj=yj ¼

P
N
m¼0ð1 − yjηÞmρmm, it means that using TS
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probes provides us with measurements, which should
provide enough information to reconstruct elements ρmm.
To collect the necessary data, only one precalibrated
on-off detector is needed and it is sufficient to change the
probe arbitrarily. When the signal is blocked, the average
number of photons nj in the probe can be measured.
In practice, instead of the simplest scheme (2), we have

mixed the probe with the signal using a beam splitter (BS)
[see scheme (a) in Fig. (1)]. For two imperfectly over-
lapping fields, the signal a and the probe b, interfering on
the BS and afterwards impinging on the detector, the
probability of registering “no click” is given by [12]

pj ¼ Trf∶ expf−η½Ta†aþ ð1 − TÞb†b
þ xða†bþ b†aÞ�g∶ρσjg; ð3Þ

where a†, a and b†, b are the creation and annihilation
operators of the signal and probe modes, σj is the density
matrix of the jth probe field, T is the transmissivity of the
BS, x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μTð1 − TÞp
, μ is the overlap parameter. and ∷

denotes the normal ordering operator. For perfect overlap,
Eq. (3) results in a straightforward relation,

Πjm ¼
XN

n;k;l¼0

ð1 − ηÞkσnjjUkl
mnj2: ð4Þ

Quantities σnj ¼ ðnjÞn=ð1þ njÞnþ1 are diagonal matrix
elements of the jth probe TS. The operator U describes
the rotation performed by the BS. It has the following
matrix elements in the Fock-state basis:

Ukl
mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!l!m!n!

p Xk
g¼0

Xl

h¼0

tgþhrkþl−g−hð−1Þk−g
g!h!ðk − gÞ!ðh − lÞ!

× δm;lþg−hδn;kþh−g: ð5Þ

Here t ¼ ffiffiffiffi
T

p
and r ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p

. For zero-temperature noise,
nj ¼ 0, Eq. (4) gives

psignal ¼
XN
k¼0

ð1 − TηÞkρkk: ð6Þ

Now let us represent the probe TS as a mixture of coherent
states jαi [10]: σj ¼ 1=πnj

R
d2α expf−jαj2=njgjαihαj. In

the case of perfect overlap, pj for the probe TS can be
expressed through the probability of “no clicks” for the
coherent probe (given in Ref. [12]),

pj ¼
1

πnj

Z
d2α expf−jαj2=njg

× h∶ expf−ηTða† þ να�Þðaþ ναÞg∶ia; ð7Þ

where ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − TÞ=Tp
. Notice, that this formula is

equivalent to the expression for pj given by POVM
elements (4) for N → ∞. The POVM elements for an
imperfect overlap can be derived representing Eq. (3) for pj

for the probe TS in a form similar to Eq. (7),

pj ¼
n̄j
μnj

1

πn̄j

Z
d2α expf−jαj2=n̄jg

× h∶ expf−ηTða† þ να�Þðaþ ναÞg∶ia: ð8Þ

FIG. 1 (color online). (a) Sketch of the measurement scheme: the signal A is mixed with the probe S on the beam splitter (BS) and
impinges on the bucket detectorD. (b) State preparation setup. Pulsed light at telecom wavelengths is generated in a Ti:sapphire pumped
optical parametric oscillator (OPO) and frequency doubled by second harmonic generation (SHG). Part of the light is separated for later
use as a reference field. The repetition rate of the reference is lowered by an acousto-optical modulator (AOM). The 4-f spectrometer
tailors the spectral width of the pump beam to achieve spectral decorrelation. The PDC state is generated inside the periodically poled
KTP waveguide. The pump is separated by a long pass filter (LPF). A bandpass filter (BPF) is used to suppress background outside the
PDC spectrum. Finally the signal and idler are separated at a polarizing beam splitter (PBS). The reference field is also spectrally tailored
by a 4-f setup. Pseudothermal light is generated by a rotating speckle disk (RSD) followed by irises. (c) Measurement setup. The power
of the reference is controlled by the first half-wave plate (HWP). Signal and reference are overlapped at a PBS-HWP-PBS combination,
which effectively constitutes a variable BS adjusted to a splitting ratio of 90∶10. Probed signal and idler are coupled into single mode
fibers and impinge onto two avalanche photo diodes (APDs) (Id Quantique id201 at a repetition rate of 1 MHz with a gate width of
about 2.5 ns). A third APD is used either in the idler beam to herald two photon states or in the second output port of the variable BS to
estimate the mode overlap between the signal and reference by Hong-Ou-Mandel interference.
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The quantity n̄j¼ μnj=½1þð1−μÞð1−TÞηnj�. Comparing
the expression (8) with Eqs. (7) and (4) for perfect overlap,
we obtain the relation for the POVM elements in the case of
imperfect overlap,

Πoverlap
jm ¼ n̄j

μnj

XN
n;k;l¼0

ð1 − ηÞkσ̄njjUkl
mnj2; ð9Þ

where σ̄nj are the diagonal matrix elements of the TS with
the average number of photons n̄j. Equation (9) points to a
number of important conclusions. First of all, for zero
overlap, the “modified” average number of photons is also
zero, n̄j ¼ 0. As follows from Eqs. (6) and (9), the resulting
“no click” probability factorizes, pjðμ → 0Þ → psignalpterm,
where pterm ¼ 1=½1þ ð1 − TÞηnj� is the “no click” prob-
ability for the probe TS with vacuum instead of the signal.
For a weak probe, when ð1 − μÞð1 − TÞηnj ≪ 1, the actual
situation can be modeled by having two probe modes, the
one completely overlapping with the signal with average
number of photons equal to μnj, and the nonoverlapping
one with average number of photons equal to ð1 − μÞnj.
When the probe is strong, ð1 − μÞð1 − TÞηnj ≫ 1, part
of the probe actually interfering with the signal remains
constant, n̄j ≈ μ=ð1 − μÞð1 − TÞη. In other words, too
strong a probe will wash out the effects of interference
and destroy the possibility of reconstructing the signal.
The optimal regime is moderate levels of the probe TS.
It should be noticed that our setup can be easily

generalized for complete state reconstruction. Coherently
shifting the signal with amplitude α, one can reconstruct the
set of following quantities: hmjDðαÞρD†ðαÞjmi, where the
coherent shift operator is DðαÞ ¼ expfαa† − α�ag. For an
N-dimensional density matrix of the signal, it is sufficient
to have N different settings of the coherent shift and N TSs
to infer the complete density matrix (for the procedure see,
for example, Refs. [13]). To realize this generalization with
our setup, apart from the one additional fixed BS, one needs
only to have a precalibrated phase shifter to change the
relative phase of the added coherent field.
Setup.—For the signal state generation we employ a

type-II parametric down-conversion (PDC) source in a
periodically poled potassium titanyl phosphate (KTP)
waveguide. The source is characterized in detail in
Ref. [14]. It produces spectrally nearly decorrelated PDC
states such that heralded states have a high purity above
80%. Furthermore, being a waveguide source, it allows for
efficient coupling into single mode fibers. A scheme of the
full setup is shown in Fig. 1. To simulate a noise source
with TS photon number statistics, we generate pseudo-
thermal light using a rotating speckle disk. For each
position of the speckle disk, a random interference pattern
is created. After spacial filtering by irises and the final
fiber incoupling, the intensity shows an exponential, hence
thermal, probability distribution. We verify the thermal
statistics by measuring the mean photon number for

different positions of the disk as well as by the second-
order correlation function gð2Þ. We obtain gð2Þ > 1.9,
whereas a value of gð2Þ ¼ 2 corresponds to perfect thermal
statistics and gð2Þ ¼ 1 to Poissonian statistics. The remain-
ing coherent part is thus very small and can be neglected.
The calibration parameters of our scheme are the mode
overlap between the signal and probe μ and the overall
efficiency η. To determine the mode overlap, we adjust our
variable beam splitter to 50∶50 and measure a Hong-Ou-
Mandel dip. The overlap is calculated from the visibility of
the dip as described in Ref. [15] to be μ ¼ 0.45. The
decrease from unity comes possibly from a spectral mis-
match in the 4-f setup or a spacial mismatch while
coupling into the fiber. The detection efficiency is mea-
sured using the Klyshko scheme [16] from which we obtain
η ¼ 0.15. To generate a set of probe states, we rotate a
HWP (see Fig. 1) and measure the mean photon numbers nj
from counts in APD1 with a physically blocked PDC beam.
Results.—Figure 2 shows the results of reconstruction for

the heralded single-photon state generated by the scheme
depicted in Fig. 1. A total of 150 measurement points were
used for the inference. The reconstruction was done using
least-squares estimation with non-negativity constraints
[17]. The detection efficiency η ¼ 0.15 and the overlap
μ ¼ 0.45 were assumed. Figure 2(d) visualizes the
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FIG. 2 (color online). Reconstruction of the heralded single-
photon state for the scheme parameters η ¼ 0.15 and μ ¼ 0.45.
We used 107 PDC pulses for each value of the reference field
intensity (a). Dots show experimentally collected data for the
number of “no clicks” with respect to the total number of pulses
for the signal overlapped with the reference beam. The oscillating
behavior comes from the fact that a HWP is used to change the
reference beam power at each measurement point. Crosses depict
the same probability of “no clicks” on the APD for the signal
alone; the solid line shows probabilities estimated by Eq. (9) for
the result shown in Fig. 2(c). (b) Average number of thermal
photons nj of the probe for the data of (a). (c) Experimentally
inferred ρnn of the heralded single-photon state. (d) Experimen-
tally estimated values of vacuum (crosses) and single-photon
(dots) components of the signal obtained via bootstrapping the
data shown in (a).
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estimated values of vacuum and single-photon components
of the signal obtained via bootstrapping the data [18].
Our reconstruction procedure for the single-photon state
gives the following value of the single-photon component:
ρ11 ≈ 0.905� 0.07. This estimate conforms well with the
result of recent work [14] where the same source was used,
demonstrating the high quality of the reconstruction. Also,
quite a similar result was obtained with the same source
using the “data pattern” reconstruction method [19]. Figure 3
shows experimentally obtained data for the heralded two-
photon state and the thermal state [20]. In Fig. 3(a) only part
of the measured data are shown. Here, when varying the
probe intensity, 600 different values of reference field
intensity were taken. The average photon-number distribu-
tion shown in Fig. 3(b) is close to the thermal value with the
average number of photons equal to 0.17. Relatively large
values of variances might be explained by the fact that the
signal field intensity was significantly higher compared to
the case shown in Fig. 2. As a consequence, parameters of
the measurement setup were not as stable. In particular, the
detection efficiency was drifting, so that an efficiency drift
of about 15% was registered. This deviation might result
from a drift in the fiber incoupling efficiency due to
instabilities of the setup over the measurement time. The
data for the heralded two-photon state are affected in a
similar way as can be clearly seen also in Fig. 3(c). Here we

show experimental data for both the heralded two-photon
signal (dots) and heralded single-photon signal (solid line)
not mixed with the reference. One of the powerful features
of our method is the possibility of accounting for these
deviations, by assuming a varying efficiency. For the
estimation of the detection efficiency, we need to use the
data for the signal state not mixed with the reference. For
example, if we take the single-photon state, and use Eq. (6)
and the experimentally measured probability psignal as shown
in Fig. 2, we can compute the actual values of η. The drift in
the detection efficiency η is reflected in the varying value of
pj for the heralded single-photon signal without the refer-
ence, as depicted by the solid (red) line in Fig. 3(c). Ideally,
this should be a straight line, as it is approximately for the
data set with the low field intensity, used for the single-
photon state reconstruction (pj in Fig. 2(a), solid line).
For the data set with the higher field intensity, as used for
the two-photon reconstruction, this is not the case anymore
[Fig. 3(c)]. To account for this, we incorporated the
calculated actual efficiency values in the expression for
the POVM elements (9) when inferring ρnn for the generated
two-photon state [Fig. 3(d)]. The obtained results for the
two-photon signal are quite similar to those obtained recently
with the same source using the data pattern method [19]. It
should be emphasized that the deviations of the obtained
data do not lead to reconstruction artifacts in our scheme. For
example, the vacuum component of the reconstructed signal
remains very low despite a rather noisy character of the data.
Also, the result of reconstruction does unambiguously show
that despite low efficiencies of the detection, the scheme
produces states with a large two-photon component. All
these feature are preserved even if no correction for varying
detection efficiency is performed for the two-photon state
[Fig. 3(d)], although the relative errors are much higher then.
Conclusions.—We have demonstrated both theoretically

and experimentally that reconstruction by noise is indeed
feasible and provides a lucid, robust tomographic tool.
By merely mixing the signal with the thermal noise and
measuring the statistics of the resulting field on the on-off
detector, we can collect data sufficient for inferring photon-
number distributions of different signal fields. Our
reconstruction scheme required only a minimum number
of precalibrated devices operating on the single-photon level.
For collecting data, only a single on-off detector and a fixed
ratio BS were used. The reference field (thermal light) was
calibrated using the same detector. Reconstruction of single-
photon, thermal, and two-photon states was performed.
The scheme has proven to be quite robust with respect to
the noise and deviation affecting the measurement setup.
Our scheme can be generalized to a complete tomography
by adding coherent shifts to the signal. We believe that such
a scheme can become a simple, inexpensive, and efficient
working tool of quantum diagnostics. Potentially, even
spectrally filtered light from such incoherent sources as
an incandescent lamp can be used for the probe.
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FIG. 3 (color online). (a),(b) Reconstruction of the thermal
state. (a) Dots show experimentally collected data for the number
of “no clicks” with respect to the total number of pulses for the
unheralded signal overlapped with the probe. Crosses depict
the relative number of “no clicks” on the APD for the signal
alone; the solid line shows probabilities estimated by Eq. (9)
for the average reconstruction result shown in Fig. 3(b). (c),
(d) Reconstruction of the two-photon state. (c) Dots show
experimentally collected data for the number of “no clicks” with
respect to the total number of pulses for the heralded two-photon
signal without the reference; the solid line shows experimentally
collected data for the number of “no clicks” with respect to the
total number of pulses for the heralded single-photon signal
without the reference. (d) Experimentally inferred ρnn of the
heralded two-photon state obtained accounting for the efficiency
drift. The scheme parameters are as in Fig. 2; we took 600
different settings of the reference field.
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