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We derive an analytical formula for the covariance covðA; BÞ of two smooth linear statistics
A ¼ P

iaðλiÞ and B ¼ P
ibðλiÞ to leading order for N → ∞, where fλig are the N real eigenvalues of

a general one-cut random-matrix model with Dyson index β. The formula, carrying the universal 1=β
prefactor, depends on the random-matrix ensemble only through the edge points ½λ−; λþ� of the limiting
spectral density. For A ¼ B, we recover in some special cases the classical variance formulas by Beenakker
and by Dyson and Mehta, clarifying the respective ranges of applicability. Some choices of aðxÞ and bðxÞ
lead to a striking decorrelation of the corresponding linear statistics. We provide two applications—the
joint statistics of conductance and shot noise in ideal chaotic cavities, and some new fluctuation relations
for traces of powers of random matrices.
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Introduction.—The discovery of the phenomenon of
universal conductance fluctuations (UCF) in disordered
metallic samples, pioneered by Altshuler [1] and Lee and
Stone [2], has had a profound impact on our current
understanding of the mechanisms of quantum transport
at low temperatures and voltage. There are two aspects of
this universality: (i) the variance of the conductance is
of order ðe2=hÞ2, independent of sample size or disorder
strength, and (ii) this variance decreases by precisely a
factor of 2 if time-reversal symmetry is broken by a
magnetic field. Both features, observed in several experi-
ments and numerical simulations (see Ref. [3] for a review),
naturally emerge from a random-matrix theoretical formu-
lation of the electronic transport problem [4,5]. The
phenomenon of UCF is just, however, one of the very
many incarnations of a more general and intriguing
property of sums of strongly correlated random variables.
Consider first, for instance, a set of N independent and

identically distributed Oð1Þ random variables fXig. The
random variable A ¼ P

iaðXiÞ, for any function aðxÞ
(hereafter, all summations run from 1 to N), is called a
linear statistics of the sample fXig. For large N, both the
average hAi and the variance varðAÞ typically grow linearly
with N. But, what happens if the N variables are instead
strongly correlated? A prominent example is given by theN
real eigenvalues fλig of a random matrix. In this case, a
completely different behavior emerges: if aðxÞ is twice
differentiable, while the average is still of order OðNÞ, the
variance attains a finite value for N → ∞. Moreover, quite
generally, varðAÞ ∝ 1=β, where β (the Dyson index) is
related to the symmetries of the ensemble, and on the scale
Oð1Þ of typical fluctuations around the average, the
distribution of A is Gaussian [6–15]. Recalling that the

conductance in chaotic cavities can indeed be written as a
linear statistics of a random matrix (see below), the
phenomenon of UCF is readily understood. The issue of
fluctuations of generic linear statistics has, however, a
longer history in the physics and mathematics literature
[6–15], due to its relevance for a variety of applications
beyond UCF, ranging from quantum transport in metallic
conductors [16] and entanglement of trapped fermion
chains [17] to the statistics of extrema of disordered
landscapes [18]—to mention just a few.
For a smooth aðxÞ, there exist two celebrated formulas in

the physics literature by Dyson and Mehta (DM) [19] and
Beenakker (B) [20,21] for varðAÞ, the latter precisely
derived in the context of the quantum transport problem
introduced earlier (see also Ref. [22] for a generalized B
formula). They are deemed universal—not dependent on
the microscopic detail of the random-matrix ensemble
under consideration—and correctly predict an Oð1Þ value
for N → ∞ and a universal β−1 prefactor.
What happens now if two linear statisticsAðλÞ ¼ P

iaðλiÞ
and BðλÞ ¼ P

ibðλiÞ are simultaneously considered?
Motivated by applications to the quantum transport
problem [23] and multivariate data analysis [24], we set
for ourselves the task to find a universal formula for the
covariance covðA;BÞ that would reduce to DM or B for
A≡ B. But, before proceeding, it felt natural to first check
under which precise conditions should we expect to recover
one formula or the other.
Much to our surprise, we have failed to find a sufficiently

transparent (at least to our eyes) account that encompasses
all possible cases in an accessible and systematic way.
The goal of this Letter is thus to produce a so-far
unavailable universal formula for covðA; BÞ of large dimen-
sional random matrices. As a by-product of our result,
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we generalize DM and B formulas for A ¼ B. We introduce
a “conformal map” method which encloses all pos-
sible cases (old and new) into a neat and unified frame-
work. We further employ our formula to probe a quite
interesting phenomenon of decorrelation; namely, for
some choices of aðxÞ and bðxÞ, we get covðA; BÞ ¼
OðN−1Þ. Examples are given for (i) conductance and shot
noise in ideal chaotic cavities supporting a large number
of electronic channels and (ii) fluctuation relations for
traces of powers of random matrices.
Setting and results.—We consider an ensemble of N × N

random matrices H, whose joint probability density of
the N eigenvalues λi ∈ Λ (a generic interval of the real line)
can be cast in the Gibbs-Boltzmann form

PβðλÞ ¼
1

Z
e−β½−

P
i<j

ln jλi−λjjþN
P

i
VðλiÞ� ≡ e−βEðλÞ

Z
: ð1Þ

Here, the normalization constant Z ¼ R
ΛN dλe−βEðλÞ is

the partition function of a Coulomb gas, namely, a 1D
system of N particles in equilibrium at inverse temperature
β > 0 (the Dyson index), whose energy EðλÞ contains a
logarithmic repulsive interaction and a confining single-
particle potential VðxÞ. We first define the spectral density
ρNðλÞ ¼ N−1P

iδðλ − λiÞ (a random measure on the real
line) and its average for finite (hρNðλÞi) and large N
[ρðλÞ ¼ limN→∞hρNðλÞi], where henceforth the angled
brackets stand for averaging with respect to Eq. (1). The
potential VðxÞ is assumed to be such that ρðλÞ is supported
on a single interval σ of the real line (possibly unbounded).
The form of the joint probability density (1) includes

classical invariant ensembles [25] such as Wigner-Gauss G,
Wishart-Laguerre W, Jacobi J , and Cauchy C. In Table I,
the corresponding potentials are listed. We stress, however,
that the general setting in Eq. (1) applies equally well, e.g.,
to noninvariant ensembles such as the Dumitriu-Edelman
[26] tridiagonal β ensembles, for nonquantized β > 0.
Consider now two linear statistics AðλÞ ¼ P

iaðλiÞ and
BðλÞ ¼ P

ibðλiÞ. Their covariance is given by the N-fold
integral

covðA; BÞ ¼
Z
ΛN

dλPβðλÞ½AðλÞ − hAi�½BðλÞ − hBi�: ð2Þ

For smooth aðxÞ and bðxÞ, we show that this covariance (2)
has the universal form for N → ∞

covðA; BÞ ¼ 1

βπ2

Z
∞

0

dkφðkÞRe½ ~aðkÞ ~b⋆ðkÞ�; ð3Þ

with an error term of order OðN−1Þ, which will always be
neglected henceforth. Here, Re stands for the real part and
the asterisk for complex conjugation. Assume that at least
one of the end points of σ is finite, as in many practical
cases. Then, φðkÞ ¼ k tanhðπkÞ is a universal kernel and
we have introduced a deformed Fourier transform
~fðkÞ ¼ Rþ∞

−∞ dxeikxfðTðexÞÞ, where Tð·Þ is a conformal
map defined by the edges of the support of ρðλÞ

TðxÞ ¼

8><
>:

xλ−þλþ
xþ1

for σ ¼ ½λ−; λþ�
λ− þ 1=x for σ ¼ ½λ−;∞Þ
λþ − x for σ ¼ ð−∞; λþ�

: ð4Þ

The role of Tð·Þ is to map the positive half line ½0;þ∞Þ to
the support σ of ρðλÞ. Since no such conformal mapping
exists if σ ¼ ð−∞;þ∞Þ, this (unfrequent) case (e.g., the
Cauchy ensemble C) must be treated differently. In this
case, φðkÞ ¼ k and ~fðkÞ ¼ Rþ∞

−∞ dxeikxfðxÞ is the standard
Fourier transform. Equation (3) may be used whenever the
integral converges.
Let us now offer a few remarks. First, formula (3) is

evidently symmetric upon the exchange A ↔ B, as
covðA;BÞ ¼ covðB;AÞ. Second, the only dependence on
the Dyson index β is through the prefactor β−1, as already
anticipated. Third, the details of the confining potential
VðxÞ only appear in the formula (3) through the edges λ� of
σ, the support of the limiting spectral density ρðλÞ and not
through the range of variability of the eigenvaluesΛ. This is
a consequence of universality of the (smoothed) two-point
kernel [27–30]. Fourth, if σ ¼ ½λ−; λþ�, the covariance
admits the following alternative expression in real space:

covðA;BÞ ¼ 1

βπ2
P
ZZ

λþ

λ−

dλdλ0ϕðλ; λ0Þ aðλ
0Þ

λ0 − λ

dbðλÞ
dλ

; ð5Þ

where ϕðλ;λ0Þ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððλþ−λÞðλ−λ−ÞÞ=ððλþ−λ0Þðλ0−λ−ÞÞ
p

and P stands for Cauchy’s principal value. Formula (5),
which may be more convenient than Eq. (3) in certain cases,
reduces for aðxÞ ¼ bðxÞ to the generalizedB formula for the
variance [as given in Ref. [22], Eq. (17)]. On the other hand,

TABLE I. Summary of various classical ensembles of type (1). For G, W, and J , we provide the edges of the
limiting support σ ¼ ½λ−; λþ�.

VðxÞ Λ σ

G x2=4 ð−∞;∞Þ �2

W ðx=2Þ − ln xα=2 ½0;∞Þ
�
1� ffiffiffiffiffiffiffiffiffiffiffi

1þ α
p �

2

J ln xα1=2ð1 − xÞα2=2 [0,1]
�� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðα1 þ 1Þðα1 þ α2 þ 1Þp �

=ðα1 þ α2 þ 2Þ
�
2

C ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ð−∞;∞Þ ð−∞;∞Þ
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Eq. (3) recovers for aðxÞ ¼ bðxÞ the DM formula [19] (see
Eq. (1.1) in Ref. [21]) if σ ¼ ð−∞;þ∞Þ and the B formula
[20] [see Eq. (6) below] if σ ¼ ½0; 1�. Equations (3) and (4)
constitute then a neat and unified summary of all possible
occurrences, including the case of semi-infinite supports
(relevant for some cases [31,32]). Fifth, the representation
(3) in Fourier space makes apparent that the covariance
vanishes to leading order, e.g., if ~aðkÞ is purely imaginary
and ~bðkÞ is real, which happens, e.g., for an even potential
VðxÞ ¼ Vð−xÞ and aðxÞ and bðxÞ having different parity
[33]. This simple observation immediately predicts that the
moments TrGn of a Gaussian matrix (or any random matrix
with an even potential) are asymptotically pairwise uncor-
related covðTrGn;TrGmÞ ¼ OðN−1Þ if n is even andm odd.
We provide now two examples of applications of the
covariance formula, before turning to its derivation.
Examples.—As a first example, we focus on quantum

transport in mesoscopic cavities, within the random-
scattering-matrix framework (see Ref. [16] for a review).
In this setting, the dimensionless conductance G and shot
noise P of the cavity correspond to the choices aðxÞ ¼ x
and aðxÞ ¼ xð1 − xÞ, respectively, in the Landauer-Büttiker
theory [34–36]. The parameter α ¼ N1=N2 − 1 ≥ 0, kept
fixed in the large-N1;2 limit, accounts for the asymmetry in
the number of open electronic channels. For a symmetric
cavity, α ¼ 0. Furthermore, it is well known that the
transport eigenvalues fλig are distributed according to a
Jacobi (J ) ensemble [37,38] with VJ ðxÞ ¼ ðα=2Þ ln x,
implying an average density ρðλÞ supported on ½λ−; λþ� ¼
½α2=ðαþ 2Þ2; 1� (compare with Table I).
It was precisely in this quantum transport setting that B

was first derived [20,21]. It reads

varðAÞ ¼ 1

βπ2

Z
∞

0

dkjFðkÞj2k tanhðπkÞ; ð6Þ

where FðkÞ ¼ R∞
−∞ dxeikxað1=ð1þ exÞÞ. It is immediate

to verify that Eq. (6) is recovered from our Eq. (3) upon
setting aðxÞ ¼ bðxÞ and (crucially) α ¼ 0, implying
½λ−; λþ� ¼ ½0; 1�. If α ≠ 0 (asymmetric cavities), Eq. (6)
is not applicable and the variance of conductance and shot
noise do depend explicitly on α [39], in agreement with
Refs. [40,41]. In addition, from Eq. (3), one gets the
covariance of conductance and shot noise to leading order
in the channel numbers

covðG;PÞ ¼ −
2

β

α2ðαþ 1Þ2
ðαþ 2Þ6 : ð7Þ

We have checked that this result is in agreement with the
asymptotics of an exact finite-N expression inRef. [41] valid
for all β (see alsoRef. [42] for β ¼ 1; 2; 4, Ref. [43] for β ¼ 2
and α ¼ 0, Ref. [44] for β ¼ 1; 2, and Ref. [45] for a
different large-N method). The simple form (7) shows that
forN1;2 ≫ 1, conductance and shot noise are anticorrelated

for any value of α to leading order in N1;2. Moreover, for a
symmetric (α ¼ 0) or highly asymmetric (α → ∞) cavity,
the two observables are uncorrelated (for α ¼ 0 and β ¼ 2,
this was noticed in Ref. [41]). Given that their joint (typical)
distribution is Gaussian [23], they are also independent
to leading order in N for α ¼ 0 or α → ∞. As shown in
Fig. 1, at α⋆ ¼ ð1þ ffiffiffi

3
p Þ ¼ 2.73205… (independent of β),

the anticorrelation between G and P is maximal and equal
to covðG;PÞjα¼α⋆ ¼ −1=54β. Since simultaneous measure-
ments of conductance and shot noise are possible [46], a
verification of this “1þ ffiffiffi

3
p

” effect might be within reach of
current experimental capabilities.
As a second example, we address the following question:

what is the behavior of covðTrHn;TrHmÞ as a function of n
and m for a unitarily invariant ensemble of matrices H? If
σ ¼ ½0; λþ�, we obtain from Eq. (3) for sufficiently large n
and m [33]

covðTrHn;TrHmÞ ∼ λnþm
þ
βπ

ffiffiffiffiffiffiffi
nm

p
nþm

; ð8Þ

in perfect agreement with numerical simulations on W
matrices (see Fig. 2). Setting n ¼ m, we deduce the remark-
able universal formula limn→∞½2πβvarðTrHnÞ�1=n ¼ λ2þ, in
agreement with numerical simulations (see the inset in
Fig. 2) and earlier results (see Ref. [47], Eq. (149), and
Ref. [48]). We now sketch the key steps of derivation of
the general formula (3) for σ ≠ R, treading in the same
footsteps as Ref. [21]; mathematical details will be published
elsewhere [33].
Derivation.—The starting point is Eq. (2) together with

Eq. (1). The crucial observation is that a change of variable
λi ¼ TðxiÞ induced by the conformal map TðxÞ¼ðaxþbÞ=
ðcxþdÞ with ad − cb ≠ 0 transforms the original system
into a new Coulomb gas of type (1) at the same temperature
β−1, with a modified potential ~VðxÞ [49]. In these new
variables, Eq. (2) becomes

2

1

0 5 10 15 20

0.015

0.010

0.005

0.000

C
ov

G
,P

FIG. 1 (color online). Covariance of the dimensionless con-
ductance G and shot noise P [Eq. (7)] as a function of α. The
dashed blue (β ¼ 1) and the solid black (β ¼ 2) lines are the
analytical results (7), in very good agreement with the numerical
diagonalization of 104 Jacobi matrices of size N ¼ 30 (points).
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covðA;BÞ ¼
Z
~ΛN
dx

1

~Z
e−β ~EðxÞAðTðxÞÞBðTðxÞÞ − hAihBi;

ð9Þ
with ~EðxÞ¼−

P
i<j lnjxi−xjjþN

P
i
~VðxiÞþOðNÞ. Intro-

ducing the spectral density of the new system
~ρNðxÞ ¼ N−1P

iδðx − xiÞ, Eq. (9) can be reduced to the
double integral

covðA;BÞ¼−N2

ZZ
~σ
dxdx0 ~KNðx;x0ÞaðTðxÞÞbðTðx0ÞÞ;

ð10Þ

where ~KNðx; x0Þ ¼ −h~ρNðxÞ~ρNðx0Þi þ h~ρNðxÞih~ρNðx0Þi
is the two-point (connected) correlation function [50].
We now denote ~ρðxÞ ¼ limN→∞h~ρNðxÞi and ~Kðx; x0Þ ¼
limN→∞N2 ~KNðx; x0Þ. For a suitable choice of parameters
a, b, c, and d, the corresponding density ~ρ is supported
on ~σ ¼ ð0;þ∞Þ. In summary, the maps (4) are precisely
constructed to achieve these goals: (i) the 2D Coulomb
interaction (logarithmic) is preserved, and (ii) the support
σ is mapped into ~σ ¼ ð0;þ∞Þ (this is possible whenever
σ has at most one point at infinity). If ~ρ is supported on
the positive half line, then the kernel reads [20,21]

~Kðx; x0Þ ¼ 1

π2
d
dx

d
dx0

ln

����
ffiffiffi
x

p
−

ffiffiffiffi
x0

p
ffiffiffi
x

p þ ffiffiffiffi
x0

p
����; ð11Þ

valid for x; x0 > 0. It is derived using the following two
ingredients: (i) the electrostatic integral equation for the
density

R
∞
0 dx0 ~ρðx0Þlnjx−x0j¼ ~VðxÞ, which follows from a

minimization argument of the energy of the Coulomb
gas (1) [25], and (ii) the functional relation ~Kðx; x0Þ

¼ ð1=βÞðδ~ρðλÞ=δ ~Vðλ0ÞÞ [20,21], which descends from the
definition h~ρNðxÞi ¼

R
~ΛN dxð1= ~ZÞe−β ~EðxÞ ~ρNðxÞ and the

limit N → ∞. Note that the universal 1=β behavior of
Eq. (3) is ultimately tracked back to this functional
relation. As first noticed in Ref. [20], the change of variables
x ¼ ey and x0 ¼ ey

0
makes the kernel (11) translationally

invariant, and, using standard results in Fourier space, the
formula (3) is readily established. The main usefulness of the
conformalmapmethod (for σ ≠ R) is evident: the asymptotic
kernel ~Kðx; x0Þ of the new gas (11) becomes universal
[independent of details of the potential ~VðxÞ and even of
the edge points λ� of the original density ρðλÞ], yielding the
fixed kernel φðkÞ in Eq. (3). Every surviving trace of the
original ensemble is condensed in λ�, which have now been
moved inside the argument of the linear statistics.
Conclusions.—In summary, we derived a universal for-

mula (3) for the covariance covðA; BÞ of two smooth linear
statistics for one-cut random-matrix models. Remarkable
features of Eq. (3) are (i) its dependence only on the edge
points of σ and not on Λ and (ii) the possibility that
covðA;BÞ vanishes to leading order for N → ∞. Hence,
some linear statistics of the same ensemble may be
uncorrelated to leading order in N, despite being functions
of strongly correlated eigenvalues (see Refs. [51–53] for
other occurrences of this phenomenon). A joint Gaussian
behavior—as already detected in a few cases [23,24]—
would then also imply independence.
We provided two applications to mesoscopic systems

and multivariate analysis, leaving further examples for a
forthcoming work [33] (see also Ref. [54] for another
application of our formula). In the future, it will be
interesting to search for the extension of formula (3) to
multi-cut matrix models [55–57] as well as to the case of
non-Hermitian random matrices [58]. A thorough inves-
tigation of nonsmooth linear statistics (see, e.g., Ref. [12])
is also very much called for in the context of number
variance and index problems [12,18,59,60]. It should also
be possible to study the covariance of linear statistics for
the biorthogonal case [61], and, in general, establishing a
central limit theorem for joint fluctuations of linear sta-
tistics is a task whose accomplishment may turn out to be
relevant for several applications.

We are indebted to G. Akemann, C.W. J. Beenakker,
P. Facchi, M. Novaes, and D. Savin for valuable corre-
spondence and much helpful advice. This work is sup-
ported by “Investissements d’Avenir” LabEx PALM
(ANR-10-LABX-0039-PALM). This work was partially
supported by the National Group of Mathematical Physics
(GNFM-INdAM).
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