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We reconsider the large N asymptotics of Harish-Chandra—Itzykson—Zuber integrals. We provide,
using Dyson’s Brownian motion and the method of instantons, an alternative, transparent derivation of the
Matytsin formalism for the unitary case. Our method is easily generalized to the orthogonal and symplectic
ensembles. We obtain an explicit solution of Matytsin’s equations in the case of Wigner matrices, as well as
a general expansion method in the dilute limit, when the spectrum of eigenvalues spreads over very wide

regions.
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The ability to perform explicit calculations of sums and
integrals is at the heart of much ground-breaking progress
in theoretical physics, in particular, in field theory or
statistical mechanics. In that respect, the so-called
Harish-Chandra—Itzykson—Zuber (HCIZ) integral [1,2]
is among the most beautiful results, and has found several
applications in many different fields, including random
matrix theory, disordered systems or quantum gravity (for a
particularly insightful introduction, see [3]). The general-
ized HCIZ integral Z4(A, B) is defined as

Iy(A.B) = / DT, (1)
G(N)

where the integral is over the (flat) Haar measure of the
compact group Q € G(N) = O(N),U(N) or Sp(N) in N
dimensions and A,B are arbitrary N X N symmetric
(Hermitian or symplectic) matrices. The parameter f is
the usual Dyson “inverse temperature,” with f = 1,2, or 4,
respectively, for the three groups. In the unitary case
G(N)=U(N) and p =2, it turns out that the HCIZ
integral can be expressed exactly, for all N, as the ratio
of determinants that depend on A, B, and additional
N-dependent prefactors:

det ((eN”"’lf)lsi,jgN)
AA)AB)

__ N
IﬁZZ(AﬁB) - N(NZ_N)/Z

2)
with {v;}, {4;} the eigenvalues of A and B, A(A) =
[[;<jlvi —v;| the Vandermonde determinant of A [and,
similarly, for A(B)], and cy = [V i!.

Although the HCIZ result is fully explicit for f = 2, the
expression in terms of determinants is highly nontrivial and
quite tricky. For example, the expression becomes degen-
erate (0/0) whenever two eigenvalues of A (or B) coincide.
Also, as is well known, determinants contain N! terms of
alternating signs, which makes their order of magnitude
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very hard to estimate a priori. This difficulty appears
clearly when one is interested in the large N asymptotics of
HCIZ integrals, for which one would naively expect to have
a simplified, explicit expression as a functional
Fa(pa.pp) =limy_oN"2InZs_,(A, B) of the eigenvalue
densities py 3 of A, B. [The N=2 scaling can be guessed by
noting that generically TrAQBQ" = O(N), but of course
this is insufficient]. But even this large N limit turns out to
be highly nontrivial. In a remarkable paper, Matytsin [4]
suggested a mapping to a nonlinear hydrodynamical
problem in one dimension, the solution of which gives,
in principle, access to F,(p4,pg). Matytsin’s result for
N — oo was later shown by Guionnet and Zeitouni [5] to be
mathematically rigorous. Still, neither Matytsin’s, nor
Guionnet and Zeitouni’s derivation is very transparent
(at least to our eyes). In this Letter, we recover
Matytsin’s equations using a rather straightforward instan-
ton approach to the large deviations of the Dyson Brownian
motion that describes the (fictitious) dynamics of eigen-
values connecting p4 to pg. Our approach is easily adapted
to arbitrary values of f, including the orthogonal case
which yields Zuber’s “1/2 rule” when N — oo; i.e.,
Fi(pa,ps) = F2(pa,pg)/2 [6]. We then solve exactly
Matytsin’s equation in two particular cases: (i) both p,
and pp are Wigner semicircle distributions (of arbitrary
widths 6,4 p); (i1) p4 and pp are arbitrary, but with diverging
widths 64 p — co. We compare our results with the small-o
expansion obtained in [7].

Our main idea is to study, using the method of instantons,
the large deviations of the Dyson Brownian motion of
eigenvalues that brings an initial distribution of eigenvalues
p4 to a final distribution pp (see Fig. 1). This occurs with a
probability that is exponentially small, « exp(—N2S), with
a rate S that we are able to relate directly to the HCIZ
integral—see below. (The idea to use Dyson Brownian
motion in that context can also be found, but in a very
different language, in [8].) Suppose that one adds to a
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FIG. 1 (color online). Dyson Brownian motion transporting the
initial distribution p, of the eigenvalues of A to the final
distribution pp of the eigenvalues of B, in a (fictitious) time r = 1.

certain matrix A small random Gaussian Hermitian matri-
ces of variance dtf/N. It is well known that in the dt — 0
limit, the eigenvalues {x;} of the time-dependent matrix
evolve according to (see [9])

2
dxi—\/ﬁ:N

where W(¢) is the standard Brownian motion and we set,
henceforth, f = 2, corresponding to unitary matrices. The
calculation of S can be done using two different (but
complementary) languages: that of particle trajectories and
that of densities, using the Dean-Kawasaki formalism. We
start with the particle point of view, and sketch the density
functional method later. We introduce the total potential
energy U({x;}) =—x>i-;In|x;—x;|, and the corre-
sponding “force” f; = —d, U. The probability of a given
trajectory for the N Brownian motions between time ¢ = 0
and time ¢ = 1 is given by (see Fig. 1) [10]

(3)

P({x;(1)}) = Nexp— [N/ dtz X 4 0,.U) ]
=Ne™NS, (4)

where A is some normalization. The action S = S| + S,
contains a total derivative equal, in the continuum limit, to

Z=B

5= =3 | [ asaosp =" )

Z=A

and

S, — %Al dt; 52+ (9, U)Y. (6)

The “instanton” trajectory that dominates the probability
for large N is such that the functional derivative with
respect to all x;(z) is zero (see e.g., [11]):

dzxi
dr?

Xj.Xp Uaxf U=0, (7)

which leads, after a few algebraic manipulations, to

dzx,-
a N22 ®)

f#l

This can be interpreted as the motion of unit mass particles,
accelerated by an attractive force that derives from an
effective two-body potential ¢(r) = —(Nr)~2. The hydro-
dynamical description of such a fluid is given by the Euler
equations for the density p(x,7) and the velocity field
v(x, 1) [12]

9 (x, 1) + Oxlp(x, )v(x, 1)] = 0, ©)

and

Ow(x, 1) + v(x, )0, v(x, 1) = — 0,P(x,t), (10)

p(x,1)

where P(x,t) is the pressure field which reads, from the
virial formula in one dimension [13][p. 138]:

P= pT——pZIX — X | (x; = xp) NZZ Ty

[£3] [£3]
(11)

because the fluid is at an effective temperature 7 = 1/N
(see below). Now, using the same argument as Matytsin [4],

i.e., writing x;—x,~(i—¢)/(Np) and >°% , n™2 = (z%/6),
one finally finds [14]
2
Px, 1) = =Zplx. 1), (12)

and therefore Matytsin’s equations for p and v. Plugging
this back in the action S, and going to the continuous limit,
one also finds

SZN%Aldt/dxp(x, ) {UZ(x,tH%p%x, a0, (13)

which is exactly Matytsin’s action [4]. Finally, the prob-
ability P({4;}|{v;}) to observe the set of eigenvalues {1;}
of B for a given set of eigenvalues v; for A is proportional to
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exp[—N?(S1 + S2)], where S, is obtained by plugging into
Eq. (13) the solution of the Euler equations (9), (10), with
v(x,t={0,1}) chosen in such a way that p(v,r =0) =
pa(v) and p(2,1 =1) = pp(4).

Now, the idea is to interpret the HCIZ integrand in the
unitary case, exp[NTrAUBU'], as a part of the propagator
of the diffusion operator in the space of Hermitian matrices.
Indeed, adding to A small random Gaussian Hermitian
matrices of variance dt/N, the probability to end up with
matrix B in a time 7 = 1 is P(B|A) xexp—[N/2Tr(A—B)?].
Writing B = VAVT with A = diag(4,, ..., Ay), the change
of variables, as is well known, induces a probability
measure on {4;} alone that includes a Vandermonde
determinant A*(B) = [],_;|4; — 4;|*. Since the conditional
distribution of {4;} is obviously invariant under
B — UBU", where U is an arbitrary unitary transforma-
tion, we get another expression for P({4;}|{v;}) [15]:

P{AitH{vi})

N
[ HM,- — A7 / DU exp — [ETr(A - UBUT)Z}

i<j
2 N 2 2
x A*(B)exp— E(TrA + TrB*) |Z,(A, B). (14)
Comparing this last expression for f = 2 with the above
calculation, and taking care of the proportionality coef-

ficients, we get as a final expression for Fy_,(A,B) =
limy_N2InZ,(A, B):

FaAB)==3=$,(A.B) + [ devlpy()+ pa(x)

El

=5 [ drdylpa(oa) + pu()pa()links
(15)

which is, apart from the —3/4 term which comes from the
prefactor in Eq. (2), precisely Matytsin’s result [4]. Now,
the whole calculation above can be repeated for the f = 1
(orthogonal group) or f# = 4 (symplectic group) with the
final (simple) result Fy(A, B) = fF,(A,B)/2. This coin-
cides with the result obtained by Zuber in the orthogonal
case f =1 [6] (see also [8,17]).

We now briefly explain how to obtain the same
result using the Dean-Kawasaki framework [18,19]. As
shown by Dean [19], the density p(x,7) of interacting
particles obeying the Langevin equation (3) is found to
satisfy the (functional) Langevin equation 9,p(x, )+
0 J(x,1) = 0, with

J(2.1) = & )V T0 1) = 5D, 1)

—plx.1) / B0V (x—yp(.1).  (16)

where V(r) = —Inr is the two-body interaction potential,
&(x, 1) is a normalized Gaussian white noise (in time
and in space), and, unlike in [19], we define p(x,1) =
(1/N) >N, 8[x — x;(1)]. One can again write the weight of
histories of {p(x, )} using Martin-Siggia-Rose path inte-
grals. This reads

P({p(x, t)}) « </ ’Dwe[.ﬁ; dtfdeZiy/(x,t)(a,p+an)]> ‘

¢

(17)

Performing the average over & gives the following action
(and renaming —iy — y):

1
S= N2/0 dt/ dx [l//atp + f(x, 1)pdey

Y 5 1 2
-—0 —p(0 18
5 Oxp 50 xw)} (18)
with f(x,7) = [dyd,V(x —y)p(y.1). Taking functional
derivatives with respect to p and y then leads to the
following set of equations:

1
0ip = Ox(pf) + Ox(pOsy) + 315 0% (19)

and
Dy =2 (O = Oy ——— 2
W =5 (0aw)? = fO 5 0k

~a, / dyV(x=y)p(y.00,w(y.0).  (20)

The Euler-Matystin equations are recovered, after a little
work, by setting v(x, 1) = —f(x,t) — dp(x, t). One can
finally check [20] that the S coincides with S when using
the equation of motion satisfied by p,y, and f. Note that
this second method gives rise to additional “diffusion”
terms, of order 1/N, which lead to a viscosity term in the
velocity equation. This second method might therefore be
more adapted to search for subleading corrections (in N?)
to the action.

Somewhat surprisingly, Matytsin’s formalism has not
been exploited to find explicit solutions for Fy(A, B) in
some special cases. One fully solvable case is when A and
B have centered Wigner semicircle spectra [21],
pa(v) = \/4o5 — 1V /27063, and, similarly, for pp, with a
width o65. One can first note that since trivially

Fy4(A,B) = F4(A/z,zB), one can always choose z =
\/o,/0p and set 64, = 65 = 6. The second remark is that
the Euler-Matytsin equations can be solved by choosing
p?(x,t) = a(t) + y(¢)x* and v(x,t) = b(t)x, which leads
to ordinary differential equations for «, y, and b. The final
solution is that p(x, t) is a Wigner semicircle for all ¢, with a
width X(¢) given by
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g=1V1+46* =262 (21)
and b(t) = (t—1/2)g/Z*(t). Note that X*(t=0)=

¥%(t = 1) = 62, as it should be. Injecting these expressions
into Egs. (13), (15) finally leads to (with 6*> = 6,065)

Yo
Vact +1-1 —1og<1+4++1>}

(22)

22(t) = 0 + gt(1 — 1),

1
Fow(A,B) = 2

For arbitrary matrices A, B, the narrow spectra limit
(corresponding to ¢ — 0) has been worked out by
Collins [7]. Specializing his general result to the case of
Wigner matrices, one finds

0.4 68 0.12

Faw(AB) = 5=+ =5+ O(c'%), (23

which coincides with the small ¢ expansion of Eq. (22).
In the opposite limit ¢ — oo, we find from Eq. (22):

1
FawlA.B) = 0" =In(0) =5 =5+ 35 O,

Note that Eq. (22) has a singularity (in the complex plane)
for 6* = —1/4. The general analytical properties of F 5 have
attracted a lot of attention recently, see [22] and references
therein.

The limit 6 — oo can be called the dilute limit and can be
studied in full generality, since the solution of the Euler-
Matytsin equations can be constructed as a power series of
€ = 1/0, where we define 6> = [ dxx’p,(x) (we choose
here, without loss of generality [23], TrA = TrB = 0, and
rescale the matrices A, B appropriately such that both have
the same variance ¢2). In the case where p, = pp but of
arbitrary shape (but provided p, vanishes at the edge of the
spectrum), our final result to order €% reads

Fy(A.A) / drxp (x)

5:0

3 72
- [ dxdypaopals)inlr—y|-3-% [ dwk )

4
+25 [ i (s (2P +0(e"), (25)
which is identical to Eq. (24) when p, is a Wigner
semicircle, but holds more generally. Note that terms
appear in order of importance in the above formula.

The general expression for p, # pp is cumbersome and
will be given in a longer version of this work [20]. To order
€2, the result reads

Fy(A.B) = /OldPXA(P>XB(P)

=0

1
—5 [ drdpa(pa(s)nlx-1

1 3
=5 [ drdyou(x)p()inlx =51 -3

ﬂz

—FAIdppA[XA(p)]pB[XB(P)]+O(86), (26)

where X,(p) is such that p = [*_dup,(u) € [0,1]. For
A = B, one recovers Eq. (25) by changing variables back
from p to x, with the Jacobian dp/dx = p,(x). The leading
term in the above expansion is in fact [} dpX,(p)Xp(p)
and is easy to interpret: it comes from the fact that in the
limit 6 — oo, HCIZ integrals Eq. (1) are dominated by the
matrix € that diagonalizes B in the diagonal base of A (and
the corresponding eigenvalues {A}, {v} are ordered).

The main achievements of this work are twofold: we first
rederived the large N asymptotics of HCIZ integrals, first
obtained by Matytsin, using Dyson’s Brownian motion and
the method of instantons. We also provided an exact,
explicit solution for the case of Wigner matrices, as well
as a general expansion method in the dilute limit, when the
eigenvalue spectra spread over very wide regions. Beyond
providing a relatively straightforward and transparent
interpretation of Matytsin’s method, our work could pro-
vide a valuable starting point to obtain new results, such as
the generalization to other ensembles (orthogonal, sym-
plectic, Wishart), as in [8], but also to understand the
structure of subleading (in N?) corrections. Our explicit
results in the dilute limit should also be useful for
applications, such as, for example, the Bayesian estimate
of large correlation matrices using empirical data [24].
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