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We reconsider the large N asymptotics of Harish-Chandra—Itzykson—Zuber integrals. We provide,
using Dyson’s Brownian motion and the method of instantons, an alternative, transparent derivation of the
Matytsin formalism for the unitary case. Our method is easily generalized to the orthogonal and symplectic
ensembles. We obtain an explicit solution of Matytsin’s equations in the case of Wigner matrices, as well as
a general expansion method in the dilute limit, when the spectrum of eigenvalues spreads over very wide
regions.
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The ability to perform explicit calculations of sums and
integrals is at the heart of much ground-breaking progress
in theoretical physics, in particular, in field theory or
statistical mechanics. In that respect, the so-called
Harish-Chandra—Itzykson—Zuber (HCIZ) integral [1,2]
is among the most beautiful results, and has found several
applications in many different fields, including random
matrix theory, disordered systems or quantum gravity (for a
particularly insightful introduction, see [3]). The general-
ized HCIZ integral IβðA;BÞ is defined as

IβðA;BÞ ¼
Z
GðNÞ

DΩe
βN
2
TrAΩBΩ†

; ð1Þ

where the integral is over the (flat) Haar measure of the
compact group Ω ∈ GðNÞ ¼ OðNÞ; UðNÞ or SpðNÞ in N
dimensions and A; B are arbitrary N × N symmetric
(Hermitian or symplectic) matrices. The parameter β is
the usual Dyson “inverse temperature,” with β ¼ 1; 2, or 4,
respectively, for the three groups. In the unitary case
GðNÞ ¼ UðNÞ and β ¼ 2, it turns out that the HCIZ
integral can be expressed exactly, for all N, as the ratio
of determinants that depend on A;B, and additional
N-dependent prefactors:

Iβ¼2ðA;BÞ ¼
cN

NðN2−NÞ=2
det ððeNνiλjÞ1≤i;j≤NÞ

ΔðAÞΔðBÞ ; ð2Þ

with fνig, fλig the eigenvalues of A and B, ΔðAÞ ¼Q
i<jjνi − νjj the Vandermonde determinant of A [and,

similarly, for ΔðBÞ], and cN ¼ Q
N
i i!.

Although the HCIZ result is fully explicit for β ¼ 2, the
expression in terms of determinants is highly nontrivial and
quite tricky. For example, the expression becomes degen-
erate (0=0) whenever two eigenvalues of A (or B) coincide.
Also, as is well known, determinants contain N! terms of
alternating signs, which makes their order of magnitude

very hard to estimate a priori. This difficulty appears
clearly when one is interested in the large N asymptotics of
HCIZ integrals, for which one would naively expect to have
a simplified, explicit expression as a functional
F2ðρA; ρBÞ ¼ limN→∞N−2 ln Iβ¼2ðA; BÞ of the eigenvalue
densities ρA;B of A;B. [The N−2 scaling can be guessed by
noting that generically TrAΩBΩ† ¼ OðNÞ, but of course
this is insufficient]. But even this large N limit turns out to
be highly nontrivial. In a remarkable paper, Matytsin [4]
suggested a mapping to a nonlinear hydrodynamical
problem in one dimension, the solution of which gives,
in principle, access to F2ðρA; ρBÞ. Matytsin’s result for
N → ∞was later shown by Guionnet and Zeitouni [5] to be
mathematically rigorous. Still, neither Matytsin’s, nor
Guionnet and Zeitouni’s derivation is very transparent
(at least to our eyes). In this Letter, we recover
Matytsin’s equations using a rather straightforward instan-
ton approach to the large deviations of the Dyson Brownian
motion that describes the (fictitious) dynamics of eigen-
values connecting ρA to ρB. Our approach is easily adapted
to arbitrary values of β, including the orthogonal case
which yields Zuber’s “1=2 rule” when N → ∞; i.e.,
F1ðρA; ρBÞ ¼ F2ðρA; ρBÞ=2 [6]. We then solve exactly
Matytsin’s equation in two particular cases: (i) both ρA
and ρB are Wigner semicircle distributions (of arbitrary
widths σA;B); (ii) ρA and ρB are arbitrary, but with diverging
widths σA;B → ∞. We compare our results with the small-σ
expansion obtained in [7].
Our main idea is to study, using the method of instantons,

the large deviations of the Dyson Brownian motion of
eigenvalues that brings an initial distribution of eigenvalues
ρA to a final distribution ρB (see Fig. 1). This occurs with a
probability that is exponentially small, ∝ expð−N2SÞ, with
a rate S that we are able to relate directly to the HCIZ
integral—see below. (The idea to use Dyson Brownian
motion in that context can also be found, but in a very
different language, in [8].) Suppose that one adds to a
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certain matrix A small random Gaussian Hermitian matri-
ces of variance dt=N. It is well known that in the dt → 0
limit, the eigenvalues fxig of the time-dependent matrix
evolve according to (see [9])

dxi ¼
ffiffiffiffiffiffiffi
2

βN

s
dW þ 1

N
dt
X
j≠i

1

xi − xj
; ð3Þ

where WðtÞ is the standard Brownian motion and we set,
henceforth, β≡ 2, corresponding to unitary matrices. The
calculation of S can be done using two different (but
complementary) languages: that of particle trajectories and
that of densities, using the Dean-Kawasaki formalism. We
start with the particle point of view, and sketch the density
functional method later. We introduce the total potential
energy UðfxigÞ ¼ − 1

N

P
i<j ln jxi − xjj, and the corre-

sponding “force” fi ¼ −∂xiU. The probability of a given
trajectory for the N Brownian motions between time t ¼ 0
and time t ¼ 1 is given by (see Fig. 1) [10]

PðfxiðtÞgÞ ¼ N exp−
�
N
2

Z
1

0

dt
X
i

ð_xi þ ∂xiUÞ2
�

≡N e−N
2S; ð4Þ

where N is some normalization. The action S ¼ S1 þ S2
contains a total derivative equal, in the continuum limit, to

S1 ¼ −
1

2

�Z
dxdyρZðxÞρZðyÞ ln jx − yj

�
Z¼B

Z¼A
ð5Þ

and

S2 ¼
1

2N

Z
1

0

dt
XN
i¼1

½_x2i þ ð∂xiUÞ2�: ð6Þ

The “instanton” trajectory that dominates the probability
for large N is such that the functional derivative with
respect to all xiðtÞ is zero (see e.g., [11]):

−2
d2xi
dt2

þ 2
XN
l¼1

∂2
xi;xlU∂xlU ¼ 0; ð7Þ

which leads, after a few algebraic manipulations, to

d2xi
dt2

¼ −
2

N2

X
l≠i

1

ðxi − xlÞ3
: ð8Þ

This can be interpreted as the motion of unit mass particles,
accelerated by an attractive force that derives from an
effective two-body potential ϕðrÞ ¼ −ðNrÞ−2. The hydro-
dynamical description of such a fluid is given by the Euler
equations for the density ρðx; tÞ and the velocity field
vðx; tÞ [12]

∂tρðx; tÞ þ ∂x½ρðx; tÞvðx; tÞ� ¼ 0; ð9Þ
and

∂tvðx; tÞ þ vðx; tÞ∂xvðx; tÞ ¼ −
1

ρðx; tÞ ∂xPðx; tÞ; ð10Þ

where Pðx; tÞ is the pressure field which reads, from the
virial formula in one dimension [13][p. 138]:

P¼ ρT −
1

2
ρ
X
l≠i

jxi − xljϕ0ðxi − xlÞ≈−
ρ

N2

X
l≠i

1

ðxi − xlÞ2
;

ð11Þ

because the fluid is at an effective temperature T ¼ 1=N
(see below). Now, using the same argument as Matytsin [4],
i.e., writing xi−xl≈ði−lÞ=ðNρÞ and P∞

n¼1 n
−2 ¼ ðπ2=6Þ,

one finally finds [14]

Pðx; tÞ ¼ −
π2

3
ρðx; tÞ3; ð12Þ

and therefore Matytsin’s equations for ρ and v. Plugging
this back in the action S, and going to the continuous limit,
one also finds

S2 ≈
1

2

Z
1

0

dt
Z

dxρðx; tÞ
�
v2ðx; tÞ þ π2

3
ρ2ðx; tÞ

�
; ð13Þ

which is exactly Matytsin’s action [4]. Finally, the prob-
ability PðfλigjfνigÞ to observe the set of eigenvalues fλig
of B for a given set of eigenvalues νi for A is proportional to

t =0 t =1

ν1

ν2

ν3

νΝ

λ 1

λ 2

λ 3

λ Ν

t

x1(t)

x

x

x

2(t)

3(t)

(t)
N

FIG. 1 (color online). Dyson Brownian motion transporting the
initial distribution ρA of the eigenvalues of A to the final
distribution ρB of the eigenvalues of B, in a (fictitious) time t ¼ 1.
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exp½−N2ðS1þ S2Þ�, where S2 is obtained by plugging into
Eq. (13) the solution of the Euler equations (9), (10), with
vðx; t ¼ f0; 1gÞ chosen in such a way that ρðν; t ¼ 0Þ ¼
ρAðνÞ and ρðλ; t ¼ 1Þ ¼ ρBðλÞ.
Now, the idea is to interpret the HCIZ integrand in the

unitary case, exp½NTrAUBU†�, as a part of the propagator
of the diffusion operator in the space of Hermitian matrices.
Indeed, adding to A small random Gaussian Hermitian
matrices of variance dt=N, the probability to end up with
matrix B in a time t ¼ 1 is PðBjAÞ∝exp−½N=2TrðA−BÞ2�.
Writing B ¼ VΛV† with Λ ¼ diagðλ1;…; λNÞ, the change
of variables, as is well known, induces a probability
measure on fλig alone that includes a Vandermonde
determinant Δ2ðBÞ ¼ Q

i<jjλi − λjj2. Since the conditional
distribution of fλig is obviously invariant under
B → UBU†, where U is an arbitrary unitary transforma-
tion, we get another expression for PðfλigjfνigÞ [15]:

PðfλigjfνigÞ

∝
Y
i<j

jλi − λjj2
Z

DU exp−
�
N
2
TrðA −UBU†Þ2

�

∝ Δ2ðBÞ exp−
�
N
2
ðTrA2 þ TrB2Þ

�
I2ðA;BÞ: ð14Þ

Comparing this last expression for β ¼ 2 with the above
calculation, and taking care of the proportionality coef-
ficients, we get as a final expression for Fβ¼2ðA;BÞ ¼
limN→∞N−2 ln I2ðA;BÞ:

F2ðA;BÞ¼−
3

4
−S2ðA;BÞþ

1

2

Z
dxx2½ρAðxÞþρBðxÞ�

−
1

2

Z
dxdy½ρAðxÞρAðyÞþρBðxÞρBðyÞ� ln jx−yj;

ð15Þ

which is, apart from the −3=4 term which comes from the
prefactor in Eq. (2), precisely Matytsin’s result [4]. Now,
the whole calculation above can be repeated for the β ¼ 1
(orthogonal group) or β ¼ 4 (symplectic group) with the
final (simple) result FβðA; BÞ ¼ βF2ðA;BÞ=2. This coin-
cides with the result obtained by Zuber in the orthogonal
case β ¼ 1 [6] (see also [8,17]).
We now briefly explain how to obtain the same

result using the Dean-Kawasaki framework [18,19]. As
shown by Dean [19], the density ρðx; tÞ of interacting
particles obeying the Langevin equation (3) is found to
satisfy the (functional) Langevin equation ∂tρðx; tÞþ∂xJðx; tÞ ¼ 0, with

Jðx; tÞ ¼ 1

N
ξðx; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
−

1

2N
∂xρðx; tÞ

− ρðx; tÞ
Z

dy∂xVðx − yÞρðy; tÞ; ð16Þ

where VðrÞ ¼ − ln r is the two-body interaction potential,
ξðx; tÞ is a normalized Gaussian white noise (in time
and in space), and, unlike in [19], we define ρðx; tÞ ¼
ð1=NÞPN

i¼1 δ½x − xiðtÞ�. One can again write the weight of
histories of fρðx; tÞg using Martin-Siggia-Rose path inte-
grals. This reads

Pðfρðx; tÞgÞ ∝
�Z

Dψe½
R

1

0
dt
R

dxN2iψðx;tÞð∂tρþ∂xJÞ�
�

ξ

:

ð17Þ

Performing the average over ξ gives the following action
(and renaming −iψ → ψ):

S ¼ N2

Z
1

0

dt
Z

dx

�
ψ∂tρþ fðx; tÞρ∂xψ

−
ψ

2N
∂2
xxρþ

1

2
ρð∂xψÞ2

�
ð18Þ

with fðx; tÞ ¼ R
dy∂xVðx − yÞρðy; tÞ. Taking functional

derivatives with respect to ρ and ψ then leads to the
following set of equations:

∂tρ ¼ ∂xðρfÞ þ ∂xðρ∂xψÞ þ
1

2N
∂2
xxρ ð19Þ

and

∂tψ −
1

2
ð∂xψÞ2¼f∂xψ −

1

2N
∂2
xxψ

−∂x

Z
dyVðx−yÞρðy;tÞ∂yψðy;tÞ: ð20Þ

The Euler-Matystin equations are recovered, after a little
work, by setting vðx; tÞ ¼ −fðx; tÞ − ∂xψðx; tÞ. One can
finally check [20] that the S coincides with S when using
the equation of motion satisfied by ρ;ψ, and f. Note that
this second method gives rise to additional “diffusion”
terms, of order 1=N, which lead to a viscosity term in the
velocity equation. This second method might therefore be
more adapted to search for subleading corrections (in N2)
to the action.
Somewhat surprisingly, Matytsin’s formalism has not

been exploited to find explicit solutions for FβðA; BÞ in
some special cases. One fully solvable case is when A and
B have centered Wigner semicircle spectra [21],
ρAðνÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2A − ν2

p
=2πσ2A, and, similarly, for ρB, with a

width σB. One can first note that since trivially
FβðA; BÞ ¼ FβðA=z; zBÞ, one can always choose z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
σA=σB

p
and set σA ¼ σB ¼ σ. The second remark is that

the Euler-Matytsin equations can be solved by choosing
ρ2ðx; tÞ ¼ αðtÞ þ γðtÞx2 and vðx; tÞ ¼ bðtÞx, which leads
to ordinary differential equations for α; γ, and b. The final
solution is that ρðx; tÞ is a Wigner semicircle for all t, with a
width ΣðtÞ given by
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Σ2ðtÞ ¼ σ2 þ gtð1 − tÞ; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ4

p
− 2σ2; ð21Þ

and bðtÞ ¼ ðt − 1=2Þg=Σ2ðtÞ. Note that Σ2ðt ¼ 0Þ ¼
Σ2ðt ¼ 1Þ ¼ σ2, as it should be. Injecting these expressions
into Eqs. (13), (15) finally leads to (with σ2 ¼ σAσB)

F2;WðA; BÞ ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ4 þ 1

p
− 1 − log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ4 þ 1

p

2

��
:

ð22Þ

For arbitrary matrices A;B, the narrow spectra limit
(corresponding to σ → 0) has been worked out by
Collins [7]. Specializing his general result to the case of
Wigner matrices, one finds

F2;WðA;BÞ ¼
σ→0

σ4

2
−
σ8

4
þ σ12

3
þOðσ16Þ; ð23Þ

which coincides with the small σ expansion of Eq. (22).
In the opposite limit σ → ∞, we find from Eq. (22):

F2;WðA;BÞ ¼
σ→∞

σ2 − lnðσÞ − 1

2
−
σ−2

8
þ σ−6

384
þOðσ−10Þ:

ð24Þ

Note that Eq. (22) has a singularity (in the complex plane)
for σ4 ¼ −1=4. The general analytical properties of Fβ have
attracted a lot of attention recently, see [22] and references
therein.
The limit σ → ∞ can be called the dilute limit and can be

studied in full generality, since the solution of the Euler-
Matytsin equations can be constructed as a power series of
ε ¼ 1=σ, where we define σ2 ≡ R

dxx2ρAðxÞ (we choose
here, without loss of generality [23], TrA ¼ TrB ¼ 0, and
rescale the matrices A;B appropriately such that both have
the same variance σ2). In the case where ρA ¼ ρB but of
arbitrary shape (but provided ρA vanishes at the edge of the
spectrum), our final result to order ε6 reads

F2ðA;AÞ ¼
ε→0

Z
dxx2ρAðxÞ

−
Z

dxdyρAðxÞρAðyÞlnjx−yj−3

4
−
π2

6

Z
dxρ3AðxÞ

þπ4

24

Z
dxρ3AðxÞρA0ðxÞ2þOðε10Þ; ð25Þ

which is identical to Eq. (24) when ρA is a Wigner
semicircle, but holds more generally. Note that terms
appear in order of importance in the above formula.
The general expression for ρA ≠ ρB is cumbersome and

will be given in a longer version of this work [20]. To order
ε2, the result reads

F2ðA;BÞ ¼
ε→0

Z
1

0

dpXAðpÞXBðpÞ

−
1

2

Z
dxdyρAðxÞρAðyÞ ln jx−yj

−
1

2

Z
dxdyρBðxÞρBðyÞ ln jx−yj−3

4

−
π2

6

Z
1

0

dpρA½XAðpÞ�ρB½XBðpÞ�þOðε6Þ; ð26Þ

where XZðpÞ is such that p ¼ R
X
−∞ duρZðuÞ ∈ ½0; 1�. For

A ¼ B, one recovers Eq. (25) by changing variables back
from p to x, with the Jacobian dp=dx ¼ ρAðxÞ. The leading
term in the above expansion is in fact

R
1
0 dpXAðpÞXBðpÞ

and is easy to interpret: it comes from the fact that in the
limit σ → ∞, HCIZ integrals Eq. (1) are dominated by the
matrix Ω that diagonalizes B in the diagonal base of A (and
the corresponding eigenvalues fλg; fνg are ordered).
The main achievements of this work are twofold: we first

rederived the large N asymptotics of HCIZ integrals, first
obtained by Matytsin, using Dyson’s Brownian motion and
the method of instantons. We also provided an exact,
explicit solution for the case of Wigner matrices, as well
as a general expansion method in the dilute limit, when the
eigenvalue spectra spread over very wide regions. Beyond
providing a relatively straightforward and transparent
interpretation of Matytsin’s method, our work could pro-
vide a valuable starting point to obtain new results, such as
the generalization to other ensembles (orthogonal, sym-
plectic, Wishart), as in [8], but also to understand the
structure of subleading (in N2) corrections. Our explicit
results in the dilute limit should also be useful for
applications, such as, for example, the Bayesian estimate
of large correlation matrices using empirical data [24].
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