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Simulations of five different coarse-grained models of symmetric diblock copolymers are compared to
demonstrate a universal (i.e., model-independent) dependence of the free energy and order-disorder
transition (ODT) on the invariant degree of polymerization N̄. The actual values of χN at the ODTapproach
predictions of the Fredrickson-Helfand (FH) theory for N̄ ≳ 104 but significantly exceed FH predictions at
lower values characteristic of most experiments. The FH theory fails for modest N̄ because the competing
phases become strongly segregated near the ODT, violating an underlying assumption of weak segregation.
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Universality is a powerful feature of polymer physics
that allows the behavior of real systems to be predicted on
the basis of simple generic models. The best example of
this is the scaling theory of dilute and semidilute polymer
solutions in good solvent [1–3]. This theory predicts a
universal dependence on two thermodynamic state param-
eters—an excluded volume parameter and an overlap
parameter. Experimental verification of this scaling hypoth-
esis [3–5] was a key step in the development of a very
sophisticated understanding of polymer solutions. Here,
we use computer simulations to verify an analogous
scaling hypothesis regarding the thermodynamics of block
copolymers and to study universal characteristics of the
order-disorder transition (ODT).
We consider a dense liquid of AB diblock copolymers,

with N monomers per chain, and a fraction fA of A
monomers. We focus on the symmetric case fA ¼ 1=2.
Self-consistent field theory (SCFT) is the dominant theo-
retical approach for block copolymers [6–8]. SCFT
describes polymers as random walks with a monomer
statistical segment length b, which we take to be equal for A
and B monomers. The free energy cost of contact between
A and B monomers is characterized by an effective Flory-
Huggins interaction parameter χe. Let g denote a dimen-
sionless excess free energy per chain, normalized by the
thermal energy kBT. SCFT predicts a free energy g for each
phase that depends only upon fA and the product χeN, or
upon χeN alone for fA ¼ 1=2. This yields a predicted phase
diagram [6,7] that likewise depends only on fA and χeN.
For fA ¼ 1=2, SCFT predicts a transition between the
disordered and lamellar phases at ðχeNÞODT ¼ 10.495.
SCFT has long been believed to be exact in the limit

of infinitely long, strongly interpenetrating polymers
[9,10]. The degree of interpenetration in a polymer liquid
may be characterized by a dimensionless concentration
C̄≡ cR3=N, in which c is monomer concentration, c=N is

molecule concentration, and R ¼ ffiffiffiffi
N

p
b is coil size.

Alternatively, we may use the invariant degree of polym-
erization N̄ ≡ C̄2 ¼ Nðcb3Þ2 [10]. A series of post-SCFTs
[10–18], starting with the Fredrickson-Helfand (FH) theory
[10], has given predictions for finite diblock copolymers
that depend on N̄ in addition to the SCFT state parameters
but that reduce to SCFT predictions in the limit N̄ → ∞.
Specifically, these theories suggest that, for symmetric
copolymers, g is given in each phase by a universal (model-
and chemistry-independent) function of χeN and N̄ alone:

g ¼ gðχeN; N̄Þ: ð1Þ
If so, the value of χeN at the ODT (where the free energies
of competing phases are equal) should depend only on N̄
and should approach 10.495 as N̄ → ∞. Equation (1) is a
conjecture that is suggested by the mathematical structure
of the FH theory. We show here, however, that this scaling
hypothesis has a much wider range of validity than the
theory that inspired it.
We compare simulations of four continuum bead-spring

models (models H, S1, S2, and S3) and one lattice model
(model F). Each bead-spring model has a harmonic bond
potential and a nonbonded pair potential of the form
VijðrÞ ¼ ϵijuðrÞ, with ϵAA ¼ ϵBB and ϵAB ≥ ϵAA. Model
H uses a truncated purely repulsive Lennard-Jones pair
potential (H denotes “hard”) and is similar to the model of
Grest and co-workers [19,20]. Models S1, S2, and S3 all
use the softer pair potential typical of dissipative particle
dynamics simulations. Model F is an fcc lattice model
with 20% vacancies, an interaction ϵAB between unlike
nearest-neighbor monomers, and no interaction between
like monomers (ϵAA ¼ ϵBB ¼ 0). Models H [21–23], S1
[22,23], and F [24–27] have been studied previously.
All bead-spring simulations reported here use accelerated
NPT molecular dynamics [28] on Graphics Processing
Units (GPUs). ODTs for bead-spring models were
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identified using a well-tempered metadynamics free energy
method, as discussed in our Supplemental Material [29].
The word “model” is used here to refer to a set of choices

for the functional form of the pair and bond potentials and
for almost all parameters, except N and one parameter that
is varied to control χe. Here, we vary the difference
α≡ ϵAB − ϵAA, while holding T, pressure or monomer
concentration, ϵAA, and all other parameters constant for
each model.
The parameters of the four bead-spring models were

chosen to facilitate testing of universality [Eq. (1)] by
creating pairs of simulations of different models with
unequal values of N but equal values of N̄. Parameters
for models H, S1, S2, and S3 were adjusted to give values
of N̄=N ¼ ðcb3Þ2 with ratios of nearly 1∶4∶16∶32.
Because simulations were conducted for chain lengths
N ¼ 16, 32, 64, and 128 that also differ by multiples of
2, some pairs of simulations of different models have equal
values of N̄. Specifically, systems H-64 (model H with
N ¼ 64) and S1-16 (model S1 with N ¼ 16) both have
N̄ ≃ 240, while S1-64 and S2-16 both have N̄ ≃ 960,
systems S1-128, S2-32, and S3-16 all have N̄ ≃ 1920, and
S3-64 and S2-32 both have N̄ ≃ 3840.
The simulations presented here span N̄ ≃ 100–7600,

thus overlapping most of the range N̄ ≃ 200–20000
explored in experiments. For example, N̄ ≃ 1100 in a
classic study of symmetric poly(styrene-b-isoprene)
[38,39], N̄ ≃ 220 in a recent study of poly(isoprene- b-L
lactic acid) [40], and N̄ ≃ 5000 in the study of poly
(ethylene-propylene-b-ethyl ethylene) used to test the FH
theory [41–44].
Estimating χe.—To compare results of different simu-

lation models or experimental systems to coarse-grained
theories, or to each other, one must somehow estimate how
the interaction parameter χe for each model or chemistry
depends on temperature T (in experiments) or simulation
parameters. In our simulations, χe is an unknown model-
dependent function χeðαÞ of the control parameter α.
In previous simulations, χeðαÞ has almost always been

assumed to be a linear function of α, of the form
χeðαÞ≃ zα=kBT. Methods of estimating the coefficient z
have generally relied [45] on either (1) some form of
random-mixing approximation, thus ignoring monomer-
scale correlations, or (2) a perturbation theory that allows a
value for z to be obtained by analyzing intermolecular pair
correlations in a reference homopolymer liquid [45–47].
The latter approach has been shown to give the first term of
a Taylor expansion of χeðαÞ in powers of α [47]. In recent
studies of the structure factor SðqÞ in the disordered phase
[21,22], this perturbative estimate for χe was found to work
well for small values of α (as expected) but to fail for the
larger values of α reached near the ODT in most of the
simulations considered here.
In the analysis of experimental data, the dependence of

χeðTÞ upon temperature T is often estimated by fitting the

structure factor Sðq; TÞ in the disordered phase to predic-
tions of the RPA or FH theories. Below, we apply a similar
analysis to simulation data for Sðq; αÞ. This approach is
motivated by recent improvements in the agreement
between theoretical predictions and simulation results for
SðqÞ in the disordered phase [23], which were obtained by
using an improved theory for SðqÞ, the renormalized one-
loop theory (ROL) [16,17], and (equally importantly)
allowing χe to be a nonlinear function of α. In what
follows, results for the free energy and ODT are thus
analyzed and plotted using a nonlinear approximation for
χeðαÞ for each model that is obtained, as in Ref. [23], by
doing a simultaneous fit of results for Sðq; αÞ from
simulations of several chain lengths to the ROL theory,
while constraining the value of dχeðαÞ=dα at α ¼ 0 to agree
with perturbation theory [29]. The need to allow for a
nonlinear dependence of χeðαÞ upon α implies that changes
in α are inducing nonuniversal changes in monomer-
scale correlations, in addition to universal changes in
long-wavelength correlations.
Results.—We test Eq. (1) by comparing results from dif-

ferent simulation models and chain lengths for the molecu-
lar free energy g and its derivative g0 ≡ ∂g=∂ðχeNÞ. Given
an adequate independent estimate of χeðαÞ, g0 can be
calculated from simulation data using the relation

∂g
∂ðχeNÞ ¼

hUABðαÞi
MNϵABðαÞ

�
kBT

dχeðαÞ
dα

�
−1
; ð2Þ

where UAB is the total nonbonded AB pair interaction
energy in a system of M chains. Equation (2) is derived by
using the identity ∂g=∂α ¼ h∂HðαÞ=∂αi=ðkBTMÞ, where
HðαÞ is the model Hamiltonian, to show that ∂g=∂α ¼
hUABi=ðMkBTϵABÞ, and then writing ∂g=∂χe ¼ ð∂g=∂αÞ=
ðdχe=dαÞ.
Equation (1) implies that g0 ¼ ∂g=∂ðχeNÞ should (like g)

be a universal function of χeN and N̄. Data from simu-
lations of different models with matched values of N̄ should
thus collapse when g0 is plotted vs χeN. The quality of
the collapse does, however, depend on the accuracy of the
approximation for χeðαÞ used to construct such a plot. The
inset and main plots of Fig. 1 show two different attempts to
collapse data for g0 vs χeN for models S1-64 and S2-16, for
which N̄ ≃ 960. The inset was constructed using the linear
approximation [47] χe ≃ zα=kBT. This approach fails,
yielding a poor data collapse and poor agreement for the
value ðχeNÞODT of χeN at the ODT (arrows). The main plot
was constructed using the nonlinear approximation for
χeðαÞ obtained by fitting SðqÞ. This succeeds, giving a
nearly perfect collapse of data for g0 and consistent values
for ðχeNÞODT. Results for other pairs of models with
matching N̄ show similar agreement. The results verify
both the scaling hypothesis [Eq. (1)] and the accuracy of
this method of estimating χeðαÞ.

PRL 113, 068302 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

8 AUGUST 2014

068302-2



There is a small but measurable discontinuity Δg0 in g0
across the ODT in Fig. 1, as expected for a first-order
transition. The smallness of the discontinuity (Δg0 ≃ 0.008,
or 7%) indicates that the degree of AB contact is similar in
the disordered and ordered phases near the ODT. This
suggests that the disordered phase has a local structure
rather similar to that of the ordered phase, with well-defined
A and B domains and a similar AB interfacial area per
volume, but without long-range order. The SCFT predic-
tion for g0ðχeNÞ (dashed line) is given by the spatial average
of the product ϕAðrÞϕBðrÞ of the predicted local volume
fractions of A and B monomers. This yields g0 ¼ 0.25 in
the disordered phase, at χeN < 10.495. Interestingly, SCFT
predictions for g0 are poor in the disordered phase near the
ODT but show excellent agreement with simulations in the
ordered phase. SCFT thus accurately predicts the extent of
AB contact within the ordered phase but is intrinsically
incapable of handling the strong short-range correlations in
the disordered phase.
Figure 2 shows the free energy per chain g vs χeN for four

values of N̄. These were calculated by numerically integrat-
ing simulation results for ∂g=∂α within each phase, setting
g ¼ 0 at α ¼ 0 by convention, and equating values of g in
the two phases at the observed ODT. Three of the plots show
overlapping results for pairs of simulations with matched
values of N̄, again demonstrating universality. In the range
10.495 < χeN < ðχeNÞODT in which the disordered phase
develops strong correlations, simulation results fall well
below the SCFT prediction for a homogeneous phase
(the straight line) and actually lie much closer to SCFT
predictions for the ordered phase. Interestingly, SCFT
predictions for g are rather accurate within the ordered
phase for all but the lowest value of N̄ shown here and seem
to become more so with increasing N̄. This agreement does
not follow trivially from the observed accuracy of SCFT
predictions for g0 in the ordered phase, since the value of g at

the ODT has been calculated by integrating ∂g=∂α through
the disordered phase, in which SCFT predictions for g0 are
poor. Physically, the main components of g are free energies
arising from AB contact and chain stretching. Only the
extent of AB contact is directly reflected by the value of g0.
Our results thus imply that SCFT accurately describes both
main components of g in the ordered phase, although not in
the disordered phase near the ODT.
The main plot of Fig. 3 shows a compilation of results for

ðχeNÞODT from all simulations plotted vs N̄, using our
nonlinear fits for χeðαÞ. The inset shows a corresponding
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FIG. 2 (color online). Free energy per chain g vs χeN at four
different values of N̄, plotted using a nonlinear approximation for
χeðαÞ. Solid lines are SCFT predictions for gðχeNÞ. The straight
solid line is the SCFT prediction gðχeNÞ ¼ χeN=4 for a homo-
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plot constructed using the perturbative linear approxima-
tion for χeðαÞ. As before (inset of Fig. 1), the linear
approximation fails to collapse the data. With the nonlinear
χeðαÞ, however, the results from all five models collapse
onto a master curve, as required by Eq. (1). Note particu-
larly the nearly perfect agreement between simulations with
matched values of N̄, illustrated by overlapping open
symbols. The dotted curve is an empirical fit

ðχeNÞODT ¼ 10.495þ 41.0N̄−1=3 þ 123.0N̄−0.56 ð3Þ

to the bead-spring model results, in which the first two
terms give the FH prediction [10] (solid curve). These
results suggest that the FH theory becomes accurate for
N̄ ≳ 104 but breaks down at the lower values of N̄ ≲ 104

typical of experiments.
Insight into why the FH theory fails for N̄ ≲ 104 can be

gained by examining composition profiles near the ODT.
The FH theory assumes weak segregation at the ODT. The
inset of Fig. 4 shows the dependence of the average local
volume fraction ϕAðzÞ of Amonomers in the lamellar phase
at the ODT, for model S1-64 (N̄ ≃ 960). This quantity
exhibits a rather large amplitude oscillation, yielding a
maximum max½ϕAðzÞ�≃ 90% in the middle of the A
domain. The function ϕAðzÞ is also almost perfectly
sinusoidal (ratio of the third to the first harmonic:
1.6%), but we believe that this is partly a result of
smearing by interfacial fluctuations. The main plot shows
how the value of max½ϕAðzÞ� at the ODT varies with N̄.
This value is large over the entire range studied here but
decreases slowly with N̄ in a manner consistent with
convergence to the FH prediction (solid curve) for
N̄ ≳ 104. Note that the FH theory predicts unphysical
values of max½ϕAðzÞ� > 1 for N̄ ≲ 103, implying that lower
values are well beyond its region of validity.

In this work, we provide the first compelling evidence for a
universal dependence of thermodynamic properties of block
copolymer melts on N̄, by collapsing results obtained with
different simulation models. The scaling hypothesis of
Eq. (1) is found to hold even for surprisingly short chains,
down to at least N̄ ∼ 200. We also provide the first reliable
estimate of how the value of ðχeNÞODT actually depends on
N̄, given by Eq. (3). The FH theory appears to be quanti-
tatively accurate for N̄ ≳ 104 but fails at lower values typical
of most experiments, for which the ordered and disordered
phases both become rather strongly segregated near theODT.
SCFT gives poor predictions for ðχeNÞODT but gives
surprisingly accurate predictions for the free energy of the
ordered lamellar phase, suggesting that SCFT may provide
more reliable predictions for order-order transitions.
Our success in collapsing data from different simulation

models relied critically upon the adoption of a more
sophisticated method of estimating χe than used in previous
studies of the ODT. Here, χe is determined by fitting
disordered state data for SðqÞ from each model to the
ROL theory, while allowing for a nonlinear dependence of
χe upon α. The absence of an adequate method of estimating
χe has, until now, made it impossible to perform precise
comparisons of coarse-grained simulation of block copol-
ymers to theoretical predictions, other simulation models, or
experiments. Our procedure for estimating χe can also be
applied to experiments, by fitting measured scattering
intensities to the ROL theory to estimate χeðTÞ.
Alternatively, χe could be deduced by fitting the exper-
imental ODTs to our improved estimate of ðχeNÞODT.
Interaction parameters obtained by analyzing simulations
and experiments involving symmetric block copolymers can
be used to predict the behavior of more complicated
systems, such as multiblock copolymer melts. The demon-
stration of universality, combined with an accurate, broadly
applicable method of determining χe, promises a major
improvement in the ability of coarse-grained simulations to
make reliable quantitative predictions about real materials.
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