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Understanding tunneling from an atomically sharp tip to a metallic surface requires us to account for
interactions on a nanoscopic scale. Inelastic tunneling of electrons generates emission of photons, whose
energies intuitively should be limited by the applied bias voltage. However, experiments [G. Schull et al.,
Phys. Rev. Lett. 102, 057401 (2009)] indicate that more complex processes involving the interaction of
electrons with plasmon polaritons lead to photon emission characterized by overbias energies. We propose
a model of this observation in analogy to the dynamical Coulomb blockade, originally developed for
treating the electronic environment in mesoscopic circuits. We explain the experimental finding
quantitatively by the correlated tunneling of two electrons interacting with a LRC circuit modeling the
local plasmon-polariton mode. To explain the overbias emission, the non-Gaussian statistics of the
tunneling dynamics of the electrons is essential.
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Light emission of electrons tunneling from a scanning
tunneling microscope (STM) to a metallic surface has
already been studied for many years [1]. The basic
mechanism leading to light emission has been identified
as the interaction of the tunneling electrons with a localized
surface plasmon-polariton (SPP) mode [2,3]. In a simple
picture, one expects that the emitted light spectrum is
limited by the bias voltage, ℏω < eV. This is a conse-
quence of the Fermi seas in the electronic leads, which
prohibit inelastic tunneling with higher energy exchange
due to the Pauli principle. The SPP resonance, which is
finally responsible for the photon emission, acts as a
frequency filter, and, hence, the measured spectrum is
essentially the SPP resonance cut off at a frequency eV=ℏ.
This picture has been confirmed in numerous experimental
[4] and theoretical [5] studies. However, a closer look at
some experiments [6–8] reveals the unexpected feature
that, in addition, light with energy ℏω > eV is emitted that
shows a spectrum which is also reminiscent of the SPP
modes. Several models explaining this overbias emission
have been proposed, ranging from black-body radiation [9]
and smearing of the electrodes’ Fermi distributions [10] to
nonlinear electronic processes such as hot-hole formation
[6–8,11,12] and Auger-like processes [6]. In addition,
fluorescence with overbias emission has been reported
for molecular films [13–16]. However, understanding the
detailed electron processes is an ongoing task [17].
In this Letter, we will develop a theoretical model of light

emission by a tunnel contact based on the powerful method
of dynamical Coulomb blockade. The idea is that on a short
time scale, tunneling is not adequately described by inco-
herent electrons but by a coherent two-electron tunneling
process in which each electron contributes an energy ≲eV
creating an overbias SPP excitation that finally leads to
the overbias light emission [see Figs. 1(a) and 1(b)]. It is
essential that the coupled electron-SPP system is treated as a

quantum coherent entity since intermediate virtual states
are involved. Considering a single sufficiently damped SPP
resonance, we can quantitatively reproduce the experimen-
tally observed bias voltage-dependent emission spectrum.
Furthermore, it is absolutely essential that the tunnel junction
is described as a non-Gaussian quantum noise emitter, which
at the same time means that the observed overbias emission
is a new manifestation of the nontrivial statistics of quantum
transport [18,19]. Using the method of Ref. [20], we
calculate the emission spectrum for all energies up to second
order in the tunnel conductance and find quantitative agree-
ment with experimental results of Ref. [7]. Hence, we
present for the first time a unified description of plasmon-
enhanced light emission in the sub-bias as well as in the
overbias regime [see, e.g., Fig. 1(d)].
As a first step, we develop a model of the SPP-mediated

light emission of a tunnel junction inspired by the theory of
environmental Coulomb blockade developed more than
two decades ago in mesoscopic physics [21]. In this picture,
tunneling in a junction is strongly modified because the
electronic environment leads to fluctuations of the voltage
difference across the junction showing up as, e.g., a zero-
bias anomaly in the differential conductance [22,23].
Considering that nonsymmetrized current fluctuations
induced by the combined tunnel-junction-environmental-
impedance system can be seen as light emission [24–26],
we suggest to model the SPP resonance as an electromag-
netic resonator with appropriate damping interacting with
the tunneling electrons of the STM (see Fig. 1).
In the second step, to theoretically address the problem,

we will make use of a recent observation in Ref. [20] stating
that phase fluctuations in a coherent conductor-environment
system lead to a subtle interference effect between two-
photon processes and two-electron processes that may be
identified by a strongly coupled quantum tunneling detector.
We will adapt the formalism of Ref. [20] to the quantum
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detection of light emission from our coupled junction-
resonator system, but since experimentally the detector is
far away from the junction and the emission efficiency is
only ≲10−4 [7], it is sufficient to work in lowest order in the
detector coupling, α, in our model; see Fig. 1(c).
We will start by showing how we intend to model the

interaction between the tunneling current and the SPP using
methods of environmental Coulomb blockade theory
[21,22]. According to standard theory [21,22], we model
the tunneling from the STM tip to the surface in an
electromagnetic environment as the circuit diagram depicted
in Fig. 1(c). We consider a tunnel conductor with a
dimensionless conductance gc¼RQ=Rc with RQ ¼ h=2e2

and Rc being the quantum and tunneling resistances,
respectively. The junction is coupled to a damped LC
circuit, which we model by an impedance zω ¼ iz0ωω0=
ðω2

0 − ω2 þ iωηÞ, where ω0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
is the resonance

frequency of the SPP mode, η ¼ 1=RCmodels the damping,
and z0 ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
=RQ. We will later determine these param-

eters from the experiment [7]. The interaction between the
tunnel junction and the SPP occurs in this model via
the dynamical voltage fluctuations on the node between
the tunnel junction and the LRC circuit, which can be
expressed by the phase variable φðtÞ ¼ ðe=ℏÞ R t

−∞ dtVðt0Þ.
To model the emission detection of the photons, we follow

the standard path and model the detector as a two-level

system, in which the emitted photons trigger transitions
between states characterized by an energy difference ϵ and a
matrix element T . We introduce a coupling constant α
between the voltage fluctuations and the energy level of the
detector, viz., ϵ → ϵþ αeVðtÞ. Finally, we will take the
interaction to be weak, since the photon detectors in the real
experiments are far away from the junction. Using Fermi’s
golden rule and setting ℏ ¼ 1, the detection rate at energy ϵ
due to the fluctuations of αφðtÞ [20–22] is

ΓðϵÞ ¼ jT j2
Z

dtheiαφðtÞe−iαφð0Þieiϵt: ð1Þ

To calculate heiαφðtÞe−iαφð0Þi, we employ the path integral
method, in which the real fields φ�ðtÞ are defined on the
forward and backward Keldysh contours, respectively. The
dynamics of the coupled SPP-electron system is determined
by the Keldysh actions of the conductor Sc and the circuit,
Se. The correlator can then be represented as

heiαφðtÞe−iαφð0Þi ¼
Z

D½Φ� expf−iSe½Φ� − iSc½Φ�

þ iα½−φþð0Þ þ φ−ðtÞ�g; ð2Þ

where Φ ¼ ððφþ þ φ−Þ=2;φþ − φ−ÞT . The action of
the LRC circuit, i.e., the damped LC oscillator acting as
the environment on the tunnel conductor, is quadratic in the
fields and at zero temperature given by [27,28]

Se ¼
Z

dωΦT
−ωAωΦω; Aω ¼ −

i
2

0
B@

0 − ω
z−ω

ω
zω

jωjRe
n

1
zω

o
1
CA:

The action Sc can be expressed in terms of Keldysh Green’s
functions G

̬

L;R for the free electrons on the left (L) and right
(R) sides of the tunneling barrier:

Sc ¼
i
8
gc

Z
dtdt0TrfG

̬

Lðt; t0Þ; G
̬

Rðt0 − tÞg: ð3Þ

With the equilibrium Keldysh Green’s function

G
̬
ðωÞ ¼

�
1 − 2fðωÞ 2fðωÞ
2½1 − fðωÞ� 2fðωÞ − 1

�

containing the Fermi function fðωÞ ¼ ½expðβωÞ þ 1�−1, we
can write G

̬

RðωÞ ¼ Gðω − eVÞ. We introduce G
̬

Lðt; t0Þ ¼
U
̬ †ðtÞG

̬
ðt − t0ÞU

̬
ðt0Þ with the counting fields [29] as

U
̬
ðtÞ ¼

�
e−iφ

þðtÞ 0

0 e−iφ
−ðtÞ

�
:

This concludes the description of our theoretical formalism.
The rate cannot be calculated exactly since the action of the

(c)

(a) (b)

(d)

FIG. 1 (color online). (a) A STM contact with bias voltage V
showing a correlated two-electron tunneling process. The elec-
trons interact via a SPP mode (green), which finally leads to light
emission from the junction. (b) The electron tunneling process in
energy space shows how two electrons excite a SPP via a virtual
state. The SPP decays by emitting a photon with an energy
jϵj > eV. (c) The electromagnetic model circuit: a LRC resonant
circuit mimics the (damped) SPP, and the photons emitted from
the coupled tunnel junction are captured by the detector. (d) The
photon detection rate Γ reflects the emission spectrum with
energy jϵj showing a sharp kink at eV and a substantial overbias
emission. The parameters are the resonance frequency
ω0 ¼ 1.1eV, the broadening η ¼ 0.2eV, and the coupling param-
eter gcz20 ¼ 0.3. See the text for further explanations of the
parameters.

PRL 113, 066801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

8 AUGUST 2014

066801-2



conductor is non-Gaussian, and we need an approximation
scheme.
A first approximation is considering only the Gaussian

part of the conductor action. In this case, the whole path
integral becomes Gaussian and corresponds to the well-
known results from PðEÞ theory. The quadratic part of the
conductor action reads

SG
c ¼

Z
dωΦT

−ωBωΦω; Bω ¼ −
i
2

�
0 −ωgc

ωgc ScðωÞ

�
;

with the symmetrized quantum noise of a tunnel contact
ScðωÞ ¼ gc½jωj þ Yðjωj − eVÞ� using YðωÞ ¼ −ωθð−ωÞ.
We will later discuss quantitative limitations of this
approximation. However, already now we see that the
Gaussian part alone will only lead to single photon
emission with sub-bias energies.
Combining all the quadratic parts from both the LRC

circuit and the conductor in a single matrixDω ≡ Aω þ Bω,
the correlation function heiαφðtÞe−iαφð0Þi≡ eα

2JðtÞ can be
evaluated. As a result, one finds

JðtÞ ¼
Z

dω
j~zωj2
ω2

StðωÞðe−iωt − 1Þ; ð4Þ

where StðωÞ ¼ ScðωÞ þ gcωþ 2Yð−ωÞRef1=zωg is the
total noise spectral density and the impedance
~zω ¼ zω=ð1þ zωgcÞ. The renormalized impedance ~zω is
the parallel connection of the tunnel junction and the
environmental impedance as seen by the detector. This
means the factor gc leads to an increased damping and can
be absorbed in a renormalized η. From Eq. (1), in lowest
order in α2, we find the rate

ΓGðϵÞ ¼ ~α2
j~zϵj2
ϵ2

�
gcYðjϵj − eVÞ þ Re

�
2

~zϵ

�
Yð−ϵÞ

�
: ð5Þ

Here, we have introduced a prefactor ~α2 ¼ jT j2α2.
The result (5) matches the simple expectation from the

golden rule [25]. The photon emission that is described by
energies ϵ < 0 is only caused by the nonequilibrium
electrons of the tunnel junction and is, therefore, limited
by the maximum energy eV available for inelastic tran-
sitions. As the emission requires interaction with the
environmental resonator, the electronic inelastic emission
spectrum is filtered by the SPP resonance. This is demon-
strated in Fig. 2, which shows the emission rate for different
bias voltages. There is always a sharp threshold for
−ϵ ¼ eV, and the SPP resonance becomes visible if the
threshold is larger than the resonance energy, ω0.
We have seen that the Gaussian approximation of the rate

does not result in an overbias emission. It is not possible to
calculate the non-Gaussian part exactly. Fortunately, we can
make use of the limit z2ωgc ≪ 1motivated by the experiment
by Schull et al. [7]. Fromour fitting later, we can infer that the

fluctuations of the phase are small due to the dominating
Gaussian part governed by the small environmental imped-
ance. Therefore, we can make an expansion of the non-
quadratic part of the actionS¼SeþSG

c þSð3Þ
c þSð4Þ

c þOðΦ5Þ
using exp½−iSð3Þ

c − iSð4Þ
c � ≈ 1 − iSð3Þ

c − iSð4Þ
c . This is pos-

sible since the Gaussian part of the action is dominated by the
fluctuations of the small impedance of the environment, viz.,
Φ2 < zω=ω2, and, therefore, the higher-order terms are small
by the factor gcz2ω ≪ 1.
After the expansion, the remaining path integral is just

the Gaussian average of the third and fourth moments. The
Gaussian average is then given by

⟪ � � �⟫≡
Z

D½Φ�ð� � �Þe
R

dωf−iΦT
−ωDωΦωþiαbTωðtÞΦωg; ð6Þ

where bωðtÞ ¼ ðe−iωt − 1;−ðe−iωt þ 1Þ=2ÞT . Now, all
remaining averages can be calculated usingWick’s theorem
and, as usual, this gives the sum over all possible pairings
of single and double averages. The basic averages in
frequency space can be expressed in terms of the building
blocks Dω and bωðtÞ using ~D−1

ω ¼ D−1
ω exp½α2JðtÞ�=2:

⟪Φω⟫ ¼ α ~D−1
ω b−ωðtÞ; ⟪ΦωΦT

−ω⟫ ¼ −i ~D−1
ω : ð7Þ

Note that these expressions still are valid for an arbitrary
value of α. A drastic simplification arises if we limit
ourselves to the experimentally relevant weak detection
limit in which α ≪ 1. The leading-order contributions to
the detector rate are given by combinations of the type
⟪φω⟫⟪φ−ω⟫⟪φω0φ−ω0⟫ since single averages are of lead-
ing order α. Contributions of zeroth order in α are time
independent and, therefore, only play a part in the elastic
rate characterized by ϵ ¼ 0, which is not of interest here.
Limiting ourselves to the light emission, i.e., ϵ < 0, we find
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FIG. 2 (color online). The Gaussian contribution to the emis-
sion spectrum for different bias voltages. The SPP peak becomes
clearly visible as the bias voltage exceeds the resonance energy,
ω0. In all cases, the spectrum sharply drops to zero for −ϵ > eV.
This behavior ascertains that the responsible processes are limited
by single-electron tunneling events. The broadening parameter is
chosen as η ¼ 0.3ω0.
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ΓnGðϵ < 0Þ ¼ ~α2

8
g2c

j~zϵj2
ϵ2

�Z
eV

0

dω
j~zωj2
ω2

ðeV − ωÞ½ξðωþ ϵÞ þ ξðω − ϵÞ þ 2ϵ − ξðϵÞ�þ 2Yð−eV − ϵÞ
ϵ

×
Z

∞

0

dω
ω

ðRef~zϵgRef~zωg½ξðωþ ϵÞ − ξðω − ϵÞ − 2ϵ − ξðϵÞ�

þ Imf~zϵgImf~zωg½4eV þ ξðωþ ϵÞ þ ξðω − ϵÞ − 2ξðωÞ − 2ξðϵÞ�Þ
�

ð8Þ

with ξðωÞ ¼ jωþ eVj þ jω − eVj. This is the main result
of our work and describes the influence of the non-
Gaussian contribution to the light emission in the whole
energy range. Note that it can be further simplified in the
overbias regime for eV < −ϵ < 2eV and takes the same
form as in Ref. [20] to order α2. We also see that the
overbias emission rate is ∼g2c, which signals the fact that a
correlated two-electron tunneling process is responsible.
The non-Gaussian rate (8) explains the emission of

photons with energies −ϵ > eV. The detailed behavior
of this rate as a function of energy is shown in Fig. 3 for
different values of eV. We observe that the rate has a
distinct kink for −ϵ ¼ eV, which can be seen as a signature
of the sharp Fermi edge. This leads, for eV < ω0, to a two-
peak structure with peaks of comparable heights above and
below the threshold voltage. For higher voltages, only a
single peak at the resonance frequency remains.
To compare our theoretical model with the experimental

data [7], we have to take the Gaussian as well as the non-
Gaussian rates into account. As mentioned above, the two
rates differ parametrically by a factor of gcz20. We determine
this parameter from the experimental results. In the inset of
Fig. 4, we show the total rate Γ ¼ ΓG þ ΓnG for two
different bias voltages. These rates have to be compared
to the results presented in Fig. 2(a) of Ref. [7]. From the
relative scaling of the two curves by a factor of 300 and the
width of the resonance, we determine the parameters gcz20 ≈
0.1 and η ≈ 0.3ω0, respectively. Note that the experimental

results depend on the detailed surroundings of the STM
tip’s position. We show the voltage- and energy-dependent
emission rate in the main panel of Fig. 4. The comparison to
Fig. 1(b) of Ref. [7] is striking, although the resonance
parameters in the experiment are different. We clearly
observe the threshold behaviors at −ϵ ¼ eV and −ϵ ¼
2eV. Recently, the light in the 2eV energy range has been
investigated in more detail experimentally [12], but a
confirmation of a well-developed threshold behavior still
needs more evidence. We should add that experimentally
the data are cut for −ϵ < 1.2eV, which is attributed to the
detector sensitivity. Finally, we should emphasize that the
experimental finding that the one- (two-)electron rate scales
approximately with gcðg2cÞ is correctly reproduced by our
theoretical model.
In conclusion, motivated by the experimental observa-

tion of photons with overbias energies emitted by tunnel
junctions, we have developed a model of electron-SPP
interaction based on dynamical Coulomb blockade. The
interplay between the non-Gaussian statistics of the
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FIG. 3 (color online). The non-Gaussian emission spectrum for
different bias voltages. The spectrum is clearly induced by the
SPP resonance and shows a kink at the bias voltage. The overbias
emission rate is distinctly visible, and the scaling with g2c shows
that this effect is due to two-electron tunneling processes. The
broadening of the resonance is η ¼ 0.3ω0.

FIG. 4 (color online). Main: Light emission spectrum on a
logarithmic scale as a function of bias voltage. The SPP
resonance energy is taken to be on the order of the experimental
value ω0 ¼ 1.7 eV, gcz20 ¼ 0.1, and the broadening is taken to be
η ¼ 0.2ω0. The one- and two-electron thresholds at −ϵ ¼ eV
and ¼ 2eV are indicated by dashed lines. Inset: To extract the
coupling parameter gcz20 ¼ 0.1, we compare the peak values at
−ϵ ¼ ω0 for two different bias voltages: V ¼ 2.15 V (solid line);
V ¼ 1.32 V (dashed line). By scaling the low-bias curve by a
factor of 300, we find curves similar to those of Fig. 2(a) in
Ref. [7]. Note that we have taken η ¼ 0.3ω0 to achieve a better
agreement of the resonance shape with the experiment.
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tunneling process and the resonant excitations of the SPP
leads to a pronounced emission spectrum in which the SPP
spectrum is overlaid with the sharp quantum threshold
behavior determined by the bias voltage eV. Furthermore,
the theory reproduces the experimentally observed emis-
sion with energies larger than the single-particle energy eV.
A comparison of our model calculation to the experimental
spectrum reveals a quantitative agreement of both the
spectrum of the SPP resonance and the quantum thresholds.
Our work enables a new level of modeling electron-SPP
interaction in nanosize contacts. Furthermore our calcu-
lation shows that the overbias emission can be used to
experimentally probe higher-order quantum fluctuations
from a tunnel junction. Open questions concern going
beyond the tunneling approximation and the weak coupling
regime [30] or considering the effect of molecules in the
junction [15,31,32]. Finally, more experimental and theo-
retical effort is needed to consolidate our model for
describing overbias light emission in a STM junction.
This is an important step since having a correct description
of the comparably simple case of a STM junction is crucial
for studying more complicated junctions incorporating,
e.g., molecular films.
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