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Parafermion zero energy modes are a vital element of fault-tolerant topological quantum computation.
Although it is believed that such modes form on the border between topological and normal phases, this has
been demonstrated only for Z2 (Majorana) and Z3 parafermions. I consider an integrable model of one-
dimensional fermions where such a demonstration is possible for ZN parafermions with any N. The
procedure is easily generalizable for more complicated symmetry groups.
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Non-Abelian anyons possess the most exotic statistics
known to man. Their permutation transforms one ground
state into another one locally indistinguishable from the
first [1,2]. In conformal field theories, this property appears
as nontrivial braiding of the conformal blocks [3] (see also
[4]). There are possible applications of non-Abelian sta-
tistics to fault-tolerant topological quantum computation
[5–8], but it is also interesting in its own right.
The simplest anyons emerge in models of Majorana

fermions in which material realization has possibly been
already achieved [9]. The conceptually simplest and most
straightforward generalization of Majorana fermions is ZN
parafermions. The former ones have Z2 symmetry, and the
parafermions have ZN (N > 2) symmetry. In quantum
computation applications, information is supposed to be
stored nonlocally in parafermionic zero energy modes, and
one has to learn how to manipulate them in order to process
it. To this end, several schemes have been recently suggested
[10,11]. In systems with many anyon zero energy modes,
they will interact so that the degeneracy will be lifted,
placing restrictions on the workings of the device. This
makes multianyon systems an interesting subject of
research, and many lattice models of interacting anyons
have been considered (see, for example, [12–14], and
references therein).
Themost obvious problem in this context is how to obtain

anyon zero energy modes. It has been argued, in direct
analogy with the Majorana zero energy modes, that they
emerge on a boundary between ground states with different
topological properties (see, for example, [11]). The problem
is, however, that for N > 2 in all even remotely realistic
models the parafermions are interacting objects, which
makes a consideration of inhomogeneous cases difficult.
So far, the existence of the zero energy modes was
demonstrated only for the N ¼ 3 case, which can be treated
by the Abelian bosonization [11]. As far as noninteracting
parafermions are concerned, their Hamiltonian was found to
be non-Hermitian with complex energy eigenvalues [15].
Here I suggest a solvable Hermitian fermionic model

which contains inhomogeneities of the required type. In

this model, anyon zero energy modes are located on mobile
solitons whose number and average velocity can be varied
by changing the temperature and the chemical potential.
The analysis of the corresponding Bethe ansatz equations
supports the idea that a boundary between topologically
different states does contain parafermionic zero energy
modes. Although it is not a proof that parafermion zero
energy modes always emerge on the boundary between
ground states of different topology, this is at least a
demonstration that they may emerge there. The derivation
is easily generalizable to parafermions from other simple
Lie groups such as, for instance, SUkðNÞ (see, for example,
[16]). I also derive an effective model describing a finite
density of such modes and obtain its exact solution. The
latter solutions allow one to estimate the interaction
strength between the parafermions.
The field theoretical definition and properties of mass-

less ZN chiral parafermionic fields ψ ;ψþ and ψ̄ ; ψ̄þ can be
extracted from the SUNð2Þ Kac-Moody algebra. The
corresponding current operators can be defined in terms
of free chiral fermion fields R;Rþ and L;Lþ:

Ja ¼
XN
k¼1

Rþ
kαS

a
αβRkβ; J̄a ¼

XN
k¼1

Lþ
kαS

a
αβLkβ; ð1Þ

where Sa are spin S ¼ 1=2 matrices. On the other hand,
these currents can be written as [17]

Jþ ¼
ffiffiffiffi
N

p

2π
ei

ffiffiffiffiffiffiffiffi
8π=N

p
φψ ; J− ¼

ffiffiffiffi
N

p

2π
e−i

ffiffiffiffiffiffiffiffi
8π=N

p
φψþ;

Jz ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
N=2π

p ∂zφ; ð2Þ

J̄þ ¼ e−i
ffiffiffiffiffiffiffiffi
8π=N

p
φ̄ψ̄þ; J̄− ¼ ei

ffiffiffiffiffiffiffiffi
8π=N

p
φ̄ψ̄ ;

J̄z ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffi
N=2π

p ∂ z̄φ̄; ð3Þ

where ψ ;ψþ are chiral parafermion fields and φ; φ̄ are
chiral components of the bosonic scalar field Φ ¼ φþ φ̄
governed by the Gaussian action
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S ¼ 1

2

Z
d2xð∂μΦÞ2: ð4Þ

From (2) and (3), one can deduce expressions for the two-
and multipoint correlators of the parafermion fields which
for N > 2 reveal their nontrivial braiding properties. For
the two-point functions, we have

⟪ψðzÞψþð0Þ⟫ ∼ z−2ð1−1=NÞ;

⟪ψ̄ðz̄Þψ̄þð0Þ⟫ ∼ z̄−2ð1−1=NÞ: ð5Þ

For the 2n-point correlation functions, we have the identity

hψð1Þ � � �ψðnÞψþðnþ 1Þ � � �ψþð2nÞi
¼ hJþð1Þ � � � JþðnÞJ−ðnþ 1Þ � � � J−ð2nÞi
×

Y
i<j≤n

z−2=Nij

Y
n<i<j≤2n

z−2=Nij

Y
i;j≤n

z2=Ni;jþn; ð6Þ

which shows that for N > 2 multipoint correlators of
parafermions do not satisfy Wick’s theorem.
In a direct analog to the Majorana fermions, one can

introduce a mass term for the ZN parafermions. The
corresponding action is

S ¼ ZN ½ψ ; ψ̄ � − λ

Z
d2x½ψψ̄ þ ψþψ̄þ�; ð7Þ

where the ZN term describes the critical part of the
parafermion action. The mass term changes the long
distance asymptotics of the parafermion correlation func-
tions but not their braiding properties. For N > 2, this is an
interacting theory, though its properties can be studied
since it is integrable [18].
In the N ¼ 2 case, it is easy to study a situation where λ

is coordinate dependent. It is well known that when λðxÞ
changes sign (a kink) the Schrödinger equation has a zero
energy solution where the eigenfunction is localized at the
kink (zero energy Majorana bound state). An important
question is whether such bound states exist for N > 2. Here
I suggest an indirect approach demonstrating existence of
the parafermion zero energy modes.
Let us consider the fermionic model with the

Hamiltonian density

Hf ¼ ið−Rþ
kα∂xRkα þ Lþ

kα∂xLkαÞ
þ g∥JzJ̄z þ

g⊥
2
ðJþJ̄− þ J−J̄þÞ: ð8Þ

This fermionic model was solved by the Bethe ansatz for
g⊥ ¼ g⊥ in Ref. [19] and for the general case in Ref. [20].
The subsequent discussion will rely on this solution whose
main logic I will discuss in some detail.
I have started with the fermionic model, because fer-

mions constitute elementary particles and therefore

fermionic models present a more natural starting point
for our consideration. Parafermions exist as collective
excitations of many-body fermionic theories and are in
that sense secondary objects.
To build a bridge from model (8) to models of paraf-

ermions, I will use conformal embedding. Conformal
embedding defines “fractionalization rules” for breaking
up free fermion Hamiltonians into sums of commuting
Hamiltonians of different critical models [21]. The required
embedding is

Uð2NÞ ¼ Uð1Þ ⊕ SU2ðNÞ ⊕ SUNð2Þ; ð9Þ
which means that the free fermionic Hamiltonian with
Uð2NÞ symmetry can be written as a sum of three
commuting Hamiltonians—one Gaussian model and two
Wess-Zumino-Novikov-Witten (WZNW) models, the
SUNð2Þ and the SU2ðNÞ one:Z

dxið−Rþ
kα∂xRkα þ Lþ

kα∂xLkαÞ

¼ HGauss þW½SUNð2Þ� þW½SU2ðNÞ�: ð10Þ

The current-current interaction commuteswithHamiltonians
HGauss and W½SU2ðNÞ�. Hence the corresponding sectors
of the original fermionic model (8) remain gapless. The
interacting sector is described by the SUNð2ÞWZNWmodel
perturbed by the anisotropic current-current interaction. The
corresponding Hamiltonian density is

H ¼ 2π

N þ 2
ð∶JaJa∶þ ∶J̄aJ̄a∶Þ

þ g∥JzJ̄z þ
g⊥
2
ðJþJ̄− þ J−J̄þÞ: ð11Þ

This is exactly the theory which we can rely to the
parafermions. At g∥ > 0 the theory is massive and has
solitons and antisolitons. As is evident from the exact
solution, each (anti)soliton carries a parafermion zero energy
mode which supplies it with the non-Abelian statistics. The
corresponding S matrix in the soliton sector is a tensor
product of theXXZ Smatrix (the scatteringmatrix of the sine
Gordon model) and the restricted solid-on-solid (RSOS) one
[22]. At sufficiently large g∥, it also has soliton-antisoliton
bound states.
It turns out that we can use one more conformal embed-

ding. Namely, the Lagrangian density for Hamiltonian (11)
can be written as

L ¼ 1

2
ð∂μΦÞ2 þ ZN ½ψ ; ψ̄ � − λðeiβΦψψ̄ þ H:c:Þ; ð12Þ

where λ ∼ Ng⊥ and β is related to g∥ so that at small
couplings we have β2 ¼ ð1þ Ngz=4πÞ−1.
The last term in (12) is similar to the last term in (7),

where the role of static function λðxÞ is played by dynamic
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field exp½iβΦ�. Since this field changes sign on soliton
configuration, one can use model (12) as a substitute for the
model of parafermions (7) with a coordinate-dependent
mass gap provided one meets certain requirements. First,
the solitons must be slow to be considered quasistatic and
on average be far from each other. More accurate criteria for
these will be extracted from the exact solution. Second,
quantum fluctuations of the bosonic exponent should be
small so that it will mimic a static λðxÞ in (7). This requires
small β.
The above requirements are met in the following setup.

Let us apply a magnetic field (it is coupled to the bosonic
sector) whose strength is slightly below the soliton mass
threshold. The field breaks the symmetry between the
solitons and the antisolitons. The magnitude of the field is
slightly below the soliton mass so that

T ≪ M −H ≪ M: ð13Þ
At that temperature, we have a rarified gas of thermally
excited slow solitons and no antisolitons. The thermal
velocity of these solitons is

ffiffiffiffiffiffiffiffiffi
hv2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=M

p
≪ 1; ð14Þ

and the density is

n ∼ e−ðM−HÞ=T ≪ 1; ð15Þ
so they can exist undisturbed between collisions for the
exponentially long time τ ∼ exp½ðM −HÞ=T�.
By looking at the thermodynamic Bethe ansatz (TBA)

equations, we can establish whether solitons carry paraf-
ermionic zero energy modes. The corresponding TBA
describing the soliton sector of the theory in the limit
(13) can be extracted, for example, from Ref. [23]. They are
a part of a more general system of equations which may
contain also massive soliton-antisoliton bound states (see
[24]) which are irrelevant for the present discussion. The
free energy F of model (12) written in the limit (13)

F=L ¼ −TM
Z

dθ
2π

cosh θ lnð1þ eϵNðθÞ=TÞ; ð16Þ

where L is the system size, is expressed in terms of function
ϵNðθÞ which is determined by the following system of
nonlinear integral equations:

ϵj¼Ts∘ lnð1þeϵj−1=TÞð1þeϵjþ1=TÞ
þTs∘ lnð1þeϵN=TÞδj;N−1; j¼ 1;…;N−1; ð17Þ

ϵN−K∘T lnð1þeϵN=TÞ
¼−McoshθþHþTs∘ lnð1þeϵN−1=TÞþOðe−H=TÞ: ð18Þ

where kernel K is

KðωÞ¼ sinh½πðξ−1Þω=2�
2coshðπω=2Þsinhðπξω=2Þ ; ξ¼ 1

8π=Nβ2−1
;

and

s∘fðxÞ ¼
Z

∞

−∞

dyfðyÞ
π coshðx − yÞ :

I am interested in limit (13). Then in the first approximation
one can replace quasienergies ϵj (j ¼ 1;…; N − 1) by their
constant asymptotic values for which the corresponding
integral equations (17) become algebraic. The solution is

1þ eϵj=T ¼
(
sin½πðjþ1Þ

Nþ2
�

sinð π
Nþ2

Þ

)
2

: ð19Þ

Substituting this into (16), we obtain the following expres-
sion for the free energy:

F=L ¼ −TQ
Z

dp
2π

e−ðM−HÞ=T−p2=2MT

þOðexp½−2ðM −HÞ=T�Þ; ð20Þ

Q ¼ 2 cos

�
π

N þ 2

�
: ð21Þ

This expression describes the free energy of an ideal gas of
particles of mass M with a chemical potential H. The
prefactor Q indicates that the state of N particles with
given energy is degenerate, so that in the thermodynamic
limit the degeneracy is equal to QN . This degeneracy
obviously comes from the parafermionic zero energy
modes bound to the solitons. The fact that Q is not an
integer is a direct indication that the operators describing
zero energy modes attached to different kinks do not
commute with each other. For N ¼ 2, we reproduce the
known result Dð2ÞN ¼ 2½N =2� for the dimensionality of the
Clifford algebra representation of N gamma matrices. For
N ¼ 3, the obtained dimensionality is the large N asymp-
totic of Fibonacci numbers:

ϕ ¼ 2 cosðπ=5Þ ¼ 1þ ffiffiffi
5

p

2
;

Dð3ÞN ¼ ½ϕN − ð−ϕÞ−N �=
ffiffiffi
5

p
: ð22Þ

Expression (20) is the first term in the expansion of the
free energy in the soliton density and, as I have said,
describes the ideal gas of anyons. One can move further and
extract from (17) the equations for interacting anyon gas.
The interactions lift the ground state degeneracy.
At lowest temperatures, we invert the matrix kernel in

(17) to get the equations in the form where the kernel acts
on the term which vanish in the T ¼ 0 limit:

PRL 113, 066401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

8 AUGUST 2014

066401-3



T lnð1þ eϵj=TÞ − TAjk lnð1þ e−ϵk=TÞ
¼ Aj;N−1∘s∘T lnð1þ eϵN=TÞ; ð23Þ

j; k ¼ 1;…; N − 1; ð24Þ

where

AjkðωÞ¼2cothðπω=2Þ

×
sinhfπ½N−maxðj;kÞ�ω=2gsinhfπminðj;kÞω=2g

sinhðNπω=2Þ :

At temperatures T ≪ M, the distribution function in the
right-hand side (RHS) of (23) is very sharp and can be
replaced by a delta function:

Aj;N−1∘s∘T lnð1þ eϵNðθÞ=TÞ ≈ nsolðTÞAj;N−1∘sðθÞ;
ð25Þ

where nsol is the number of solitons. Then Eqs. (23) with
such a RHS look like the TBA for the ferromagnetic XXZ
model with nsol sites and anisotropy γ ¼ π=N with an
additional restriction forbidding solutions with rapidities
shifted by iπ=2. Such restricted equations describe the
critical RSOS models [25,26] with conformal charge
c ¼ 2ðN − 1Þ=ðN þ 2Þ. The RHS of Eqs. (25) is ∼nsol,
which means that the bandwidth of the excitations of the
interacting anyon gas is proportional to the average dis-
tance between the solitons λ ∼ n−1sol. This contradicts a naive
expectation that this bandwidth is proportional to the
overlap of the zero energy mode wave functions which
would be exponentially small in Mλ. Instead, in the model
with mobile solitons we have the bandwidth which is
related to the time between their collisions.
Conclusions.—In this Letter, I used fermionic integrable

model (8) to describe a state where the mass term of ZN
parafermions alternates its sign. In this approach, paraf-
ermions exist as collective excitations of the fermionic
theory. The analysis of the Bethe ansatz equations shows
that the parafermions create zero energy bound states
attached to the domain walls (solitons) of a bosonic field.
This bosonic field is also a collective degree of freedom
related to smooth fluctuations of the spin density, and its
solitons exist as dynamic excitations. By fine-tuning the
temperature and magnetic field, one can create a situation
when the solitons are quasistatic which imitates the desired
situation of alternating parafermion mass. When the density
of the domain walls is finite, the modes interact with each
other which lifts the ground state degeneracy. The charac-
teristic bandwidth of the excitations of this interacting
anyon gas is proportional to the inverse collision time of
solitons, i.e., to the domain wall density.
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