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We report on a dielectric target that concentrates Cherenkov radiation into a small spatial area. In contrast
to traditional devices, this target can focus almost all of the radiation without using additional lenses or
mirrors. We consider the case where radiation is produced by a point charge moving along the axis of a
cylindrical channel inside an axially symmetrical target. The specific form of the target is determined using
the laws of ray optics. The field is calculated using an aperture integration method that can determine the
field near the focus. Typical field plots and the spatial distribution of the field outside the target are
presented. We demonstrate that at terahertz frequencies, this concentrator can increase the field magnitude
by up to at least 2 orders of magnitude relative to that on the surface of the target.
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Cherenkov radiation (CR) is a well-known and widely
applied phenomenon. One important application of this
effect is the detection of charged particles [1,2]. Interesting
applications of CR can be found in various fields; these
applications include bunch diagnostics [3,4], wakefield
acceleration [5,6], terahertz radiation sources [7–9], and
Cherenkov luminescence tomography [10] etc. Frequently,
it is important to concentrate the CR energy into specific
small spatial areas. Various additional lenses or mirrors that
refract or reflect, respectively, the CR are typically used to
concentrate the CR. However, a target with a specific
geometry can be created that combines the radiator and the
concentrator into a single device. This type of effect is
discussed in this paper.
Note that the rigorous theory of CR is only well

developed for a number of rather simple cases, such as
infinite (borderless) media and regular waveguide struc-
tures [1,2,11,12]. However, in realistic cases, the geometry
of the actual radiating structure frequently does not
allow for an exact analytical solution of the electromag-
netic field. To calculate the radiated field in these
complicated cases, various approximation techniques
are utilized [3,9,13–15]. In this paper, the shape of the
concentrating target is determined using the combined
method suggested in our recent paper [15], which utilizes
the exact solution of certain “key” problem and the laws of
ray optics. Furthermore, we also use another approach
(an aperture integration technique known from antenna
theory [16]) to calculate the field near the focus, where ray
optics fails.
We address the problem shown in Fig. 1(a). Let a

point charge q travel with a constant velocity υ ¼ βc in
a vacuum in a cylindrical channel (of radius a) in an axially
symmetrical dielectric target (with real permittivity ε, real
permeability μ, and the corresponding refractive index
n ¼ ffiffiffiffiffi

εμ
p

> 1). A target shape rðθÞ should be found that
concentrates the radiation produced by the charge at a given

frequency ω onto a focus point situated on the axis:
x ¼ y ¼ 0, z ¼ zf .
First, to determine the field inside the target, we

utilize the approximation method suggested in our recent
paper [15]. This field is accepted to be the same as that
in the corresponding “key” problem: a point charge
travels along the vacuum channel in an unbounded
medium with permittivity ε and permeability μ [Fig. 1(b)].
An exact solution of the Fourier transform of the magnetic
field is [12]

Hφω¼−qðπacÞ−1η−1sHð1Þ
1 ðρsÞexpðiωz=υÞ;

η¼ εμβ2−1

εð1−β2Þs0I1ðs0aÞH
ð1Þ
0 ðsaÞ−sI0ðs0aÞHð1Þ

1 ðsaÞ; ð1Þ

where s ¼ ωυ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμβ2 − 1

p
, s0 ¼ jωjυ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
,

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, Hð1Þ

0;1 and I0;1 are the Hankel function
and the modified Bessel functions, respectively. Second,
we should describe the interaction between the Cherenkov
radiation (1) and the target surface. This interaction can
be described using ray optics techniques. For large ρ
(ρjsj ≫ 1), the phase of the Cherenkov wave (in units of
k ¼ ω=c) is

ψ ¼ β−1
�
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμβ2 − 1

q
ρ

�
: ð2Þ

Therefore, the angle of the Cherenkov radiation front α is
determined by sinα ¼ ðnβÞ−1. The wave front and the
corresponding rays inside the target can be easily obtained
[see Fig. 1(b)]. The terms of the problem indicate that all
the rays should converge to the focus after they are
transmitted from the boundary.
To determine the shape of the surface that performs this

task, we consider this problem from another viewpoint.
First, we expand the ray picture from the “upper” part of the
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target to the whole plane, as shown in Fig. 1(c). Second, we
flip the rays by supposing that a point source is located
at the point x ¼ y ¼ 0, z ¼ zf . Next, we are left with the
problem of finding the surface that transforms the divergent
bunch of rays to a parallel bunch. Fortunately, the solution
to this problem is known from antenna theory [16].
From a physical point of view, the fact that the rays
become parallel after refraction means that the optical path
difference for two arbitrary rays is equal to zero. Using
ray 1 (which is orthogonal to the front and does not refract)
and another ray 2 [see Fig. 1(c)], we obtain the following
for the difference in the optical length for points M1

and M2:

r − ½f þ ðr cos u − fÞn� ¼ 0; ð3Þ

where f is the shortest distance from the source to the
surface (along ray 1), and the angle u is measured from
ray 1. From (3), we find

rðuÞ ¼ fð1 − nÞ=½1 − n cos u�: ð4Þ

Formula (4) describes a hyperbola with asymptotes
u ¼ �ua ¼ cos−1ð1=nÞ. For simplicity, we choose f so
that the curve (4) crosses the z axis at z ¼ 0. Note that other
curves also exist that provide a parallel ray bunch after
refraction. These curves are obtained from (4) by substitut-
ing fð1 − nÞ with fð1 − nÞ þmλ, where m is an integer,
and λ is the wavelength in vacuum (see [16] for detail).
We return to the initial problem and extract the section

for u ∈ ½umin; umax� from the whole curve rðuÞ. Here,
umin > π=2 − α is determined by the radius a of the
channel, and umax < ua is determined using the target
dimensions. Finally, we rotate this piece about the z axis
and obtain the following system that specifies the refracting
surface:

ρ0ðuÞ ¼ −rðuÞ cos ðuþ αÞ;
z0ðuÞ ¼ zf − rðuÞ sin ðuþ αÞ: ð5Þ

The values umin and umax should be determined from
ρ0ðuminÞ ¼ a and ρ0ðumaxÞ ¼ ρmax, where ρmax is the
maximum orthogonal dimension of the target [Fig. 1(d)].

FIG. 1 (color online). (a) Geometry of the problem: the target shape rðθÞ is such that the target concentrates the CR onto the focus.
(b) Geometry and rays of the “key” problem: CR from a charge moving in a cylindrical channel in an unbounded medium. (c) Geometry
and rays of the “expanded” problem: a point source is placed at the focus, and the surface that transforms the divergent ray beam into a
parallel beam is determined. (d) Final target that is extracted from the expanded target (c), two narrow rays (black solid) that converge to
the focus point, and two multiple reflected rays (blue dashed) that do not converge to the focus.

PRL 113, 064802 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

8 AUGUST 2014

064802-2



We can calculate the ray geometry using (4) and (5)
along with the V. A. Fock method [17], which describes
the interaction between an arbitrary wave and an arbitrary
surface. For each observation point determined by the
coordinates R and θ, we should find the point u� at the
target surface from which the corresponding ray originates.
One obtains

u� ¼ 3π=2 − α − θ for θ ∈ ½π=2; π�;
u� ¼ π=2 − αþ θ for θ ∈ ½0; π=2�: ð6Þ

where θ ∈ ½π=2; π� corresponds to the area in front of the
focus, and θ ∈ ½0; π=2� corresponds to the area behind the
focus. Note that the value of u� calculated from (6) should
be between umin and umax; otherwise, the ray is absent for
the given observation point. In vacuum, the ray length l is

l ¼ rðu�Þ − R for θ ∈ ½π=2; π�;
l ¼ rðu�Þ þ R for θ ∈ ½0; π=2�: ð7Þ

Nonzero components of the field are calculated using the
following formulas:

Hφω ¼ −Eθω ¼ H�
φωT∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þ=DðlÞ

p
exp ðiωl=cÞ; ð8Þ

where H�
φω is the field (1) at the point where the ray

originates, and T∥ is the transmission coefficient:

T∥ ¼ 2n cos θi½n cos θi þ cos θt�−1: ð9Þ

Here, the angle of incidence θi and the angle of trans-
mission θt are determined as follows:

cos θt ¼
n cos u − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2n cos uþ n2
p ; sin θi ¼

sin θt
n

: ð10Þ

The value DðlÞ describes the convergence of the ray beam.
In general, DðlÞ can be calculated via Fock’s formulas
containing the first and the second quadratic forms of the
surface (5) [17]. However, in the case under consideration,
this value can be obtained from simple geometrical con-
siderations. Because the problem is symmetric in φ, it is
sufficient to calculate the relation between the segment d0
(at the point where the ray originates when l ¼ 0) and
the segment d at the distance l for two closely set rays
[see Fig. 1(d)]:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þ=DðlÞ

p
¼ d0=d ¼ j1 − l=rðu�Þj−1: ð11Þ

As shown in (8) and (11), the ray optics approach gives an
infinite field at the focus because l ¼ rðu�Þ at this point. In
other words, this approach is not applicable near the focus.
To determine the field behavior near the focus, we will

utilize the aperture integration technique (a generalization

of the Kirchhoff method for vector fields) [16]. Using the
ray optics formula (8), we calculate the field distribution
over the plane z ¼ 0. Because of the ray convergence and
the limitedness of the target, the field in the plane z ¼ 0 is
nonzero only over the limited aperture Sa, which is an area
enclosed between two circles with radii ρ1;2 ¼ zf tan α1;2,
where sin α1 ¼ a=rðuminÞ, and sin α2 ¼ ρmax=rðumaxÞ. The
field at an arbitrary point ρ, φ, z > 0 is calculated via the
following aperture integral [16]:

4π ~Eω ¼ i
k

Z Z
Sa

ð½ ~ez; ~Ha
ω�;∇0Þ∇0gdΣ0

þ ik
Z Z

Sa

g½ ~ez; ~Ha
ω�dΣ0 −

Z Z
Sa

½½~Ea
ω; ~ez�;∇0g�dΣ0;

ð12Þ

where the prime symbol indicates that differentiation and
integration are performed over the primed coordinates of
the point at the aperture, g ¼ expðik ~RÞ= ~R,

~R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ρ02 − 2ρρ0 cosðφ − φ0Þ þ ðz − z0Þ2

q
; ð13Þ

~Ha
ω and ~Ea

ω are calculated via (6)–(8) with

θ¼ θa¼ π−arctanðρ=zfÞ; R¼Ra¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þz2f

q
: ð14Þ

Note that integral (12) can be calculated numerically.
Note that both of these methods only account for a

single refracted ray, whereas, strictly speaking, the field is
formed by multiple refracted rays [Fig. 1(d)]. However,
these additional rays cannot be concentrated by the target,
which only concentrates parallel rays whose angle is α
[Fig. 1(c)]. The multiple other refracted rays are not parallel
and have angles differ from α. Therefore, the field near the
focus (which is the main interest) is not affected by these
rays in practice.
Figure 2 shows the behavior of the field for a single ray

calculated using the two discussed approaches. Note that
the permittivity of the real target material (Teflon) is used,
and the losses in this material are taken into account. We
also have chosen the bunch with a charge 100 pC that
can pass through a millimeter-size channel [8]. As we can
see, the ray optics approach shows an infinite field at the
focus (as formulas (8) and (11) predict), while the aperture
integration technique shows a finite field. The two methods
are in a good agreement (excluding the narrow vicinity of
the peaks center). The larger frequencies correspond to
better agreements between curves. For increasing values of
ω, the width of the peak decreases (the height of the peak
decreases too because the ratio between a and a wavelength
λ ∼ ω−1 increases). Detailed tracing of the curves in Fig. 2
shows that the field at the focus can be approximately 2
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orders of magnitude larger than the field at the surface of
the target.
For a more detailed illustration of the concentrating

properties of the target, we have calculated a two-
dimensional field distribution (Fig. 3). As we can see,
the field is especially concentrated in a small area near the
focus point ρ ¼ 0, z ¼ zf . For the parameters of Fig. 3, the
focal spot (which is estimated to be on the order of 10−6) is

approximately 1 cm in the longitudinal direction and
0.1 cm in the orthogonal direction. For the results shown
in Fig. 3, we can expect further compaction of the focus
spot as the radiation frequency increases.
In Fig. 3, the field exhibits the main maximum at the

focus and a lot of weaker maxima. These lateral maxima are
explained by the fact that each point of the aperture works
as an elementary radiator (in accordance with the aperture
method). In the case under consideration where the aperture
is excited by a quasiplane wave (8), the elementary radiator
consists of crossed magnetic and electric point dipoles. The
interference of the fields produced by these dipoles causes
the oscillation of the field.
In conclusion, we determined the specific shape of a

cylindrically symmetric dielectric target that concentrates
the CR produced by a charge into a specific small spatial
area. Using the aperture integration technique, we have
calculated the field in the space surrounding the target,
including the area near the focus (where the ray optics
approach fails). We have presented a typical two-
dimensional field distribution and have estimated the focal
spot. For a decimeter-sized target and a radiated frequency
of approximately 1 THz, the size of the focal spot was
approximately 1 × 0.1 cm2. Increases in the radiation
frequency should lead to further decreases in the size of
the focal spot and better energy concentration.
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FIG. 2 (color online). Field behavior along the ray determined
by the angle θ ¼ 170° calculated via the ray optics formulas (8)
(RO) and the aperture integration approach (12) (AI). Problem
parameters: jqj ¼ 100 pC, ε ¼ 2þ 0.001i, μ ¼ 1 (Teflon),
β ¼ 0.8, xmax ¼ 25 cm, zf ¼ 8.3 cm, f ¼ 5 cm. The value
l ¼ 17.8 cm corresponds to the focus point.

 (cm)
1(Vm s)E

(cm)z

FIG. 3 (color online). Distribution of the absolute value of the
field jEθj calculated using the aperture integration approach (12).
The frequency ω ¼ 2π × 1012 s−1, a ¼ 0.03 cm, and the other
problem parameters are the same as in Fig. 2.
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