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We propose an improved method for calculating electron inelastic mean free paths (IMFPs) in solids
from experimental energy-loss functions based on the Mermin dielectric function. The “extended Mermin”
method employs a nonlimited number of Mermin oscillators and allows negative oscillators to take into
account not only electronic transitions, as is common in the traditional approaches, but also infrared
transitions and inner shell electron excitations. The use of only Mermin oscillators naturally preserves two
important sum rules when extending to infinite momentum transfer. Excellent agreement is found between
calculated IMFPs for Cu and experimental measurements from elastic peak electron spectroscopy. Notably
improved fits to the IMFPs derived from analyses of x-ray absorption fine structure measurements for Cu
and Mo illustrate the importance of the contribution of infrared transitions in IMFP calculations at low
energies.
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The electron inelastic mean free path (IMFP) is the
average distance traveled between successive inelastic
collisions by an electron moving with a particular energy
in a given material [1]. It is an essential parameter for
determination of surface sensitivity and quantitative analy-
sis in electron-beam techniques such as x-ray photoelectron
and Auger electron spectroscopy [2,3].
IMFPs are, however, difficult to determine experimen-

tally, especially at energies below 200 eV [4–7]. Much
effort has been devoted to IMFP measurements for various
materials by use of elastic peak electron spectroscopy
(EPES) [5–7]. This technique requires reference IMFP
data, which strongly constrain its applicability, and varia-
tions of up to 20% between different measurements are
common. Tanuma et al. [8] improved the EPES technique
to wean it from its dependence on a reference IMFP.
Although this refined approach can provide very reliable
results at keV energies, it is still not appropriate for
application at low energies, because of strong surface
effects. Recently, another approach has been proposed to
determine the IMFPs of Cu and Mo at energies below
120 eV by analysis of x-ray absorption fine structure
(XAFS) [9,10], and this is expected to be more reliable
than EPES for these energies. However, because of
limitations of the theoretical model [11], it does not work
for electron energies above 120 eV and so cannot be
verified by comparison with the well-established results
at keV energies from other experiments. Therefore, we can
only hope to critically evaluate the XAFS technique by
theoretical means.
One of the most popular algorithms for determining the

IMFP in solids was proposed by Penn [12], in which the
energy dependence of the energy-loss function (ELF) is
obtained from experimental optical data for the material of

interest and the dependence of the ELF on momentum
transfer q is obtained from the Lindhard model dielectric
function. The finite lifetimes of plasmons, however, are
neglected in the Lindhard function, whereas it is well
known that in real materials these excitations are damped.
Mermin [13] derived an expression for the dielectric
function εMðq;ωÞ that takes the plasmon lifetime into
account and also preserves the local electron number.
Recently, Denton et al. [14] modeled the momentum-
dependent ELF using Mermin-type terms that explicitly
include broadening effects at nonzero momentum transfer
based on the Lindhard dielectric function. Introducing the
ELF momentum dependence through the Mermin dielectric
function provides a more natural extension of its wave
number dependence and therefore should be a more
realistic model for IMFP calculations.
Instead of directly using experimental optical ELFs, a

component-based fit preprocessing is necessary for an
externally determined optical ELF in the Mermin approach.
The accuracy of the Mermin approach depends on the
availability of ELF data at q ¼ 0 that can be suitably fitted.
This point, however, has been neglected, since regular
fitting procedures are unable to model infrared transitions
and inner shell electron excitations in optical ELFs with
Mermin-type terms. The omission of these terms, espe-
cially the infrared transitions in the very low energy range,
inevitably leads to errors in the calculated IMFPs, which
become significant at energies below 10 eV because of the
larger relative deviations by as much as a few times
between fitted and original ELFs. Because of these errors
in the fitted ELFs, the basis of the existing Mermin method
is not entirely convincing. The IMFPs, especially below
200 eV, calculated with this approach in recent publications
[15,16] remain discrepant from experimental data. Here we
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propose an improved method for IMFP calculations from
model ELFs that are obtained from curve fits with Drude
functions including not only electronic transitions but also
infrared transitions and inner shell excitations. In this way,
we are able to make use of accurate Mermin ELFs
obtained from fits to measured optical ELFs over a wide
energy range.
To calculate IMFPs in the Mermin-model dielectric

function approach, we fit the experimental ELF of a
material in the optical limit (q ¼ 0) by using a linear
combination of Mermin-type ELFs or Drude functions,

Im
� −1
εðq ¼ 0;ωÞ

�
¼
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� −1
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with εM being the Mermin-type dielectric function [13].
The parameters ai, ωpi, and γi are the oscillator strength,
energy, and width of the ith oscillator, respectively. We note
that negative values of ai are permitted in the fitting
procedure.
Abril et al. [17,18] developed the MELF-GOS (Mermin-

type ELFs with generalized oscillator strengths) model to
treat experimental optical ELFs, which uses separate
approaches for contributions to the ELF due to excitations
from outer and inner shell electrons. We refer to this as the
normal Mermin (NM) method. It employs only a small
number of traditional oscillators, of order 1–10, to describe
outer shell electron excitations in the optical ELF. It is very
difficult to obtain satisfactory results with this procedure,
even for valence electron or plasmon excitations, because
one often sees a very sharp change in the ELF on the low-
energy side due to the contribution of infrared transitions
or, for nonmetallic materials, the band gap. In addition,
Abril et al. used the GOS approach to describe excitations
of inner shell electrons. It is worth mentioning that this NM
method was once named “extended Mermin model” in
de la Cruz and Yubero’s work [19] in which they studied
the influence of several model dielectric descriptions of the
momentum-dependent ELF on the calculation IMFPs. To
improve the quality of the Mermin approach, we have
developed an extended Mermin (EM) model in which a
modified oscillator scheme is adopted.
First, large numbers of extra oscillators were added to

describe the contribution of infrared transitions and inner
shell excitations. This, however, did not dramatically
improve the fits with reasonable oscillator widths γi. To
further improve the technique, some of the oscillator
strengths ai were allowed to take negative values during
the fitting. These make a negative contribution to the
ELF, but negative total ELFs are forbidden at any energy.
The combination with positive oscillators can be used to
accurately describe the sharp features around the band-gap

energy or an inner shell excitation energy, thus avoiding the
separate calculations for outer and inner shell excitations in
the EM approach. Our procedure not only extends the
traditional approach to infrared transitions and inner shell
excitations simply and naturally but also results in a more
accurate approximation to the optical ELF over the whole
energy range.
Recently, Werner et al. [20] and Tahir et al. [21] obtained

optical ELF data for Cu from experimental REELS spectra
based on two separate deconvolution procedures, respec-
tively. However, due to complicated electron-transport
processes, the ELF is involved in a measured REELS
spectrum in a more complex way other than simple
convolutions [22]. Therefore, after comparing with trans-
mission electron energy-loss measurements and verifying
by sum rules, we employed ELFs obtained from optical
measurements [23,24] as well as atomic photoabsorption
data [25] for photon energies beyond the particular meas-
urement range. Experimental optical (q ¼ 0) ELFs for Cu
[23–25] are compared with fitting results in Fig. 1. The
dotted orange lines represent Abril et al.’s fit [17] with five
Mermin-type ELFs used for Cu. The solid red lines show
ELFs fitted with the EM method. We used 77 Mermin-type
ELFs; of these, 37 negative oscillators were employed to
significantly improve the accuracy of the approximation for
sharp features in the ELFs. To visually demonstrate the
importance of the negative-oscillator technique, their con-
tributions are shown by blue and green lines to represent the
contributions from positive and negative oscillators, respec-
tively. Figure 1 reveals an excellent fit to the q ¼ 0 ELF not
only around valence and plasmon excitation features but
also for low-energy excitations and for inner shell

FIG. 1 (color online). Cu ELF in the optical limit (q ¼ 0)
as a function of excitation energy. Circles are experimental data
[23–25]. The solid line represents the ELF fitted with the EM
method, and dotted lines represent the ELF fitted from Abril et al.
[17]. The blue and green lines represent the contribution of the
negative oscillators. Insets show detail of the very low energy and
inner shell excitation regions.
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excitations at high energies. In addition, our method also
naturally preserves two important sum rules when extended
to infinite q values (see [26]).
Once the ELF is determined, the IMFP λin at an electron

kinetic energy E can be calculated from

λ−1in ðEÞ ¼
ℏ

πa0E

ZE−EF

0

dω
Zqþ
q−

Im
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εðq;ωÞ

�
dq
q
; ð2Þ

where a0 is the Bohr radius, EF is the Fermi energy, and
the integration limits, ℏq� ¼ ð2mÞ1=2½E1=2 � ðE − ℏωÞ1=2�,
are the largest and smallest kinematically allowed momen-
tum transfers for a given E and ω.
Figure 2 shows the IMFP for Cu from the EM method

together with those from the previous approaches, along
with experimental data from the EPES technique
[7,8,27,28]. Open symbols represent IMFPs measured with
traditional EPES from Tanuma et al. [7], Lesiak et al. [27],
and Jablonski et al. [28]. Filled symbols show IMFPs from
the improved EPES technique [8], which can provide more
reliable results as a result of its independence from
reference IMFP values. To verify the reliability of our
method, we produced four separate IMFPs for Cu: from the
ELF fitted using the EM method, from the NM-method
fitted ELF [17], and from the full Penn algorithm (FPA)
using both the original experimental data and the present

fit, respectively. As we were able to avoid errors in the EM
fitting procedure, it is quite reasonable to expect that the
resulting IMFPs will differ only slightly from those
calculated from the original experimental ELF. It is thus
clear that the deviations in IMFPs calculated with the
Mermin approach and the FPA must be due to the finite
lifetimes of plasmons and other excitations that are con-
sidered in the Mermin approach. The use of Mermin terms
in the q extension results in IMFPs that are smaller than
those from the FPA over the whole energy range, and more
than 25% lower at low energies (<200 eV). A detailed
comparison of the FPA and Mermin approaches will be
presented elsewhere.
Note that the agreement between traditional EPES and

calculated data from the FPA approach is due to the
reference IMFP values employed in the traditional EPES
measurements having been calculated with the FPA
approach. It can be seen that the IMFP calculated from
the EM method is in excellent agreement with the
improved-EPES measurement [8] and lower than the data
from traditional EPES [7,27,28]. The comparison with
improved EPES confirms that the EM method provides
better agreement than other theoretical predictions [29–32].
Turning to the theoretical methods’ performance at low

energy, Fig. 3 presents IMFPs from the EM method and
XAFS-based experimental results [9] for Cu below 120 eV.
We observe significant deviations of the IMFPs calculated
with the Mermin model from the present fitted ELF and
Abril et al.’s fit [17]. This discrepancy increases at first and
then converges to a stable value about 15% lower than

FIG. 2 (color online). Electron IMFPs as a function of electron
energy for Cu. Filled symbols are experimental measurements
from the improved EPES technique [8]. Open symbols are
experimental data obtained with traditional EPES from Tanuma
et al. (squares) [7], Lesiak et al. (circles) [27], and Jablonski et al.
(triangles) [28]. Solid and dot-dashed lines represent IMFPs
calculated with the EM method and our fitted ELF and with Abril
et al.’s fitted ELF [17], respectively. Short-dashed and dashed
lines show the IMFPs calculated with the FPA using the original
experimental optical ELF and the EM-fitted ELF, respectively.
The red band indicates the IMFPs predicted by other theoretical
methods [29–32].

0 20 40 60 80 100 120
0

2

4

6

8

10

12

In
el

as
ti

c 
m

ea
n 

fr
ee

 p
at

h 
(Å

)

Electron energy (eV)

 Mermin model - Present fit
 Mermin model - Abril's fit
 FPA model - Measured ELF
 FPA model - Present fit
 Corrected EM method
 Experiment [9]

Cu

FIG. 3 (color online). Electron IMFPs as a function of electron
energy for Cu at low energy. The dotted line shows the IMFP
measured with the XAFS technique [9]. The solid, dot-short-
dashed, short-dashed, and dashed lines show IMFPs calculated
with the EM method with our fitted ELF and the Abril et al. fitted
ELF [17], and by the FPA with the original experimental optical
ELF and our fitted ELF, respectively. The dot-dashed line shows
corrected results based on the EM method.
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Abril et al.’s fit with increasing electron energy. These
deviations mainly originate from small variations in ELFs
in the infrared region and accumulate as electron energy
increases [26]. The IMFPs predicted with our method show
excellent agreement with the XAFS-based experimental
data [9] between 50 and 120 eV. It is obviously that
including Mermin oscillators in the infrared region is the
key point for the EM method to reproduce experimental
IMFP data at low energies. This is a strong validity of the
(theoretical) EMmethod for determining IMFPs and also of
the (experimental) XAFS technique. As a result of the
unclear validation of the Born approximation, i.e., whether
or not the screened electron-electron interaction is properly
treated in lowest-order perturbation theory, our method
persists in disagreeing strongly with the experimental data
at very low energies, ≤40 eV. Although it is not clear
whether the XAFS-based measurements or the present
theoretical model dominates the discrepancy, we also found
an interesting relationship between IMFPs determined by
XAFS method and those of our EM method over 3–120 eV
energy range. This relationship can be expressed by
λXAFS=λM ¼ 1 − expð−E=BÞ, where λXAFS is IMFPs of
XAFS method, λM is the IMFP result from the EM method,
E is the electron kinetic energy, and B is a material-
dependent parameter (i.e., BCu ¼ 24 eV, BMo ¼ 26 eV)
which relevant to the compensation for the deviation of the
Born approximation. The resulting corrected IMFPs λC that
are calculated from λC ¼ λM½1 − expð−E=BCuÞ� are shown
as dot-dashed line in Fig. 3. We see remarkable agreement
between our corrected IMFPs and those of XAFS method
over the whole energy range. Details of the discussions for
parameter B will be presented elsewhere.
Figure 4 shows the resulting IMFPs for Mo from the EM

approach together with XAFS measurements [10] (dotted
line) in the energy range below 120 eV. The oscillator
strengths ai were again allowed to take negative values. The
fitted ELF with the contributions from the positive and
negative oscillators (blue and green lines) are shown in the
inset. We employed 69 oscillators with 33 negative oscil-
lators to fit the experimental optical ELF [25,33]. We
produced IMFPs from the ELF fitted using the EMmethod,
and from the FPA approach using the original experimental
data and the present fit, respectively. The corrected IMFP
results, with BMo ¼ 26 eV, are also shown. It is no surprise
that the IMFPs calculated with the FPA using the present fit
and using the experimental data are consistent, because of
the accuracy of the EM method’s ELF fit. The IMFPs
calculated with the EM method are smaller than those from
the FPA model as a consequence of the finite lifetimes of
plasmons and other excitations considered in the Mermin
approach. Agreement with experiment is significantly
improved across the energy range shown, with the EM
calculation being almost identical to the experimental data
between 100 and 120 eVand nearly falling within the error
bars at energies around 60 eV.

In summary, we have proposed an improved technique,
dubbed the extended Mermin method, for determining
IMFPs from measured optical ELFs. It is a more efficient
election of the Mermin oscillators than the traditional
Mermin method, especially in the infrared region.
Taking infrared transitions into account, the resulting
IMFPs for Cu and Mo are in excellent agreement with
the most reliable experimental measurements, i.e., from the
improved EPES technique on the high-energy side and
from XAFS at low energies. This result is clear evidence
that these excellent agreements with XAFS-based mea-
surements in the region of 50–120 eV, where both the
experimental and theoretical determinations should be
considered most reliable, which is not produced by other
theoretical models.
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