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We investigate how fast and how effective photocarrier excitation can modify the exchange interaction
Jex in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of Jex both by
evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating
laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both
cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that
the modified Jex emerges already within a few electron hopping times after the pulse, with a reduction that
is comparable to the effect of chemical doping.
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Magnetic long-range order and the dynamics of spins in
magnetic materials are governed by the exchange inter-
action Jex, the strongest force of magnetism. Because Jex
emerges from the Pauli principle and the electrostatic
Coulomb repulsion between electrons, it is sensitive to
purely nonmagnetic perturbations. This fact implies in-
triguing and largely unexplored possibilities for the ultra-
fast control of magnetism by femtosecond laser pulses,
which is currently a very active research area [1]. In
principle, laser excitation can effect Jex by modulating
the electronic structure (electron hopping, Coulomb repul-
sion) and by creating a nonequilibrium distribution of
photoexcited carriers (photodoping). A modification of
Jex has been discussed within the context of experiments
on manganites [2–4], magnetic semiconductors [5], and,
using static field gradients, ultracold atoms in optical
lattices [6,7]. While it might play a role as well in metallic
ferromagnets [8–11], ultrafast demagnetization [12] and
laser-induced magnetization reversal [13–15] seem at least
partly understood in terms of a given time-independent Jex.
Clearly, more theoretical work is needed to understand how
effective a modification of Jex under nonequilibrium con-
ditions can be and how fast Jex can be modified. The latter
touches the fundamental question for the time scale at
which the description of spin dynamics in terms of a Jex
emerges from the full electronic dynamics, before which
Jex is not a valid concept at all. Although this question has
not been directly addressed in the experiments mentioned
above, an investigation of this ultimate limit of spin
dynamics is in range using today’s femtosecond laser
technology.
In general, the exchange interaction arises from a low-

energy description of the electronic states in terms of
magnetic degrees of freedom. Recently, Secchi et al.
defined the nonequilibrium exchange interaction via an
effective action that governs the spin dynamics out of
equilibrium, leading to an expression in terms of non-
equilibrium electronic Green’s functions [16]. Here, we

apply this framework to the paradigm single-band Mott-
Hubbard insulator at half-filling, for which the concept of
exchange interaction in equilibrium is very well under-
stood. To directly assess the nonequilibrium electron
dynamics and evaluate the nonequilibrium Green’s func-
tions, we employ nonequilibrium dynamical mean field
theory (DMFT). Previous investigations of the antiferro-
magnetic phase in the Hubbard model have demonstrated
ultrafast melting of long-range order after an interaction
quench [17,18]. Here, we will focus on the excitation with
an electric field pulse and weaker excitation strength, to
assess the control of Jex within the ordered phase and to
determine how fast a rigid spin dynamics emerges after the
excitation.
Model.—In this Letter, we study the antiferromagnetic

phase of the repulsive Hubbard model at half-filling,

H ¼ −t0
X
hijiσ

c†iσcjσ þ U
X
j

nj↑nj↓ þ Bx

X
j

Sjx: ð1Þ

Here, c†iσ creates an electron at site i with spin σ ¼ ↑;↓
along a given spin quantization axis (the z axis). The first
two terms describe nearest-neighbor hopping t0 and repul-
sive on-site interaction U. The third term introduces
coupling of the spin Sjα ¼ 1

2

P
σσ0c

†
jσðσ̂αÞσσ0cjσ0 to a homo-

geneous magnetic field Bx along the x axis (α ¼ x; y; z; σ̂α
denote the Pauli matrices). The latter allows us to probe
transverse dynamics of the antiferromagnetic order param-
eter in the y-z plane; the x component of the total spin hSxi
is conserved.
To solve the electron dynamics in the Hubbard model,

we use nonequilibrium DMFT [19,20]. Within DMFT [21],
which becomes exact in the limit of infinite dimensions
[22], local correlation functions are obtained from an
effective impurity model in which one site of the lattice
is coupled to a noninteracting bath. In the presence of a
transverse magnetic field Bx one must include spin-flip
terms in the effective impurity action, which thus takes the
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form S ¼ Sloc − i
R
dt

R
dt0

P
σσ0cσðtÞ†Δσσ0 ðt; t0Þcσ0 ðt0Þ.

Here, Δσσ0 ðt; t0Þ is the hybridization function of the bath
that is determined self-consistently. The impurity model is
solved within the perturbative hybridization expansion
(noncrossing approximation, NCA). The incorporation of
spin-flip terms Δ↑↓ is a straightforward extension to the
nonequilibrium DMFT implementation and the NCA,
which have been explained in Refs. [20] and [23]. For
completeness, we summarize explicit equations in the
Supplemental Material [24]. In general, the DMFTapproxi-
mation is expected to be appropriate when local correla-
tions dominate, such as is the case in the Mott-insulating
phase for the short-time dynamics (up to ∼100 fs), when
the much slower (∼ ps and beyond) inhomogeneous
dynamics (spin waves, domain growth) is not yet devel-
oped. The reliability of the NCA impurity solver has been
tested in equilibrium and for short-time dynamics by
comparison with higher-order hybridization expansions
as well as with numerically exact quantum Monte Carlo
impurity solver. Good agreement was found at large U in
the paramagnetic phase [23,25] and for the antiferromag-
netic phase boundary [17].
Nonequilibrium exchange interactions.—For general

nonequilibrium situations, the exchange interaction is
defined in terms of an effective spin action that reproduces
the spin dynamics of the full electronic model. A formal
derivation of the spin interaction in such a model has been
given by Secchi and co-workers [16]. The essential idea is
to define the effective spin action in terms of time-
dependent rotations of the spin quantization axes eiðtÞ,
as described by Holstein-Primakov bosons ξiðtÞ. Starting
from the electronic partition function as a path integral over
fermionic fields ϕ, one introduces rotated fermion fields ψ
and then expands the action to second order in ξ. The
rotated fermionic fields are integrated out, which leads to
spin action with an interaction term of the form
Sspin½ξ�; ξ� ¼

P
ij

R
dt

R
dt0ξ�i ðtÞAijðt; t0Þξjðt0Þ. The cou-

pling Aijðt; t0Þ between spin rotations at different times
and different sites i ≠ j is expressed in terms of the spin-
dependent single-particle Green’s functions Gσ

ijðt; t0Þ and
the self-energies Σσ

ijðt; t0Þ,

Aijðt; t0Þ ¼ R↓
ijðt; t0ÞR↑

jiðt0; tÞ þ S↓ijðt; t0ÞS↑jiðt0; tÞ
−T↓

ijðt; t0ÞG↑
jiðt0; tÞ −G↓

ijðt0; tÞT↑
jiðt0; tÞ; ð2Þ

where Tσ
ijðt; t0Þ ¼ Σσ

ijðt; t0Þ þ ½Σ ·G · Σ�σijðt; t0Þ, Rσ
ijðt; t0Þ ¼

½G · Σ�σijðt; t0Þ, and Sσijðt; t0Þ ¼ ½Σ ·G�σijðt; t0Þ. These formu-
las are a direct generalization of the equilibrium formalism
[26,27], which is based on variations of the total (free)
energy δE ¼ Jexθ2 for static spin rotations by a small angle
θ. We emphasize that Eq. (2) is valid for arbitrary fast and
strong fields, apart from neglecting of vertex corrections
[16]. In addition, the expressions assume rotations from a
collinear state. Reduction of the action with a retarded

(two-time) exchange coupling to a spin Hamiltonian with
an instantaneous (possibly time-dependent) interaction is
possible when the rotations of the quantization axes are
much slower than the electron dynamics and, in particular,
slower than time-dependent fluctuations of the local mag-
netic moments themselves. Then, we can average over the
fast electron dynamics,

JijðtÞ ¼ Im
Z

∞

0

dsAret
ij ðt; t − sÞ: ð3Þ

Still, JijðtÞ contains not only the exchange interactions but
also the time-averaged reduction of the local spin by
fluctuations. The “bare” exchange interactions between
spin vectors hSii are finally given by

J0ijðtÞ ¼
1

4

JijðtÞ
hSizihSjzi

: ð4Þ

In the regime where a rigid macrospin model is valid, J0ij
should determine the spin dynamics by a Landau-Lifshitz
equation. For a canted antiferromagnet on a bipartite lattice
in a transverse magnetic field Bx, we can write h _S1i ¼
−hS1i ×Beff , where Beff ¼ 2JexhS2i þ Bxex. Here, hS1;2i
correspond to the spin on the two sublattices, and the
effective exchange interaction is Jex ¼

P
jJ

0
ij. Using Néel

symmetry hS1y;zi ¼ −hS2y;zi, hS1xi ¼ þhS2xi we can infer
the exchange interaction in the canted geometry from the
spin dynamics,

Jcex ¼ − Bx

4hS1xi
− 1

4hS1xi
h _S1yi
hS1zi

: ð5Þ

The validity of the instantaneous approximation is a
fundamental question that is not resolved in general and
that will be partially addressed below by comparison of the
two Eqs. (4) and (5).
Results.—We first solve the DMFT equations on the

Bethe lattice with a semielliptic density of states
DðϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − ϵ2

p
=2π. This setup implies a closed-form

self-consistency condition and allows us to compute the
electronic dynamics to long times, as needed for an
accurate evaluation of the integral in Eq. (3) (see the
Supplemental Material [24]).
Before exploring nonequilibrium, it is illustrative to

evaluate the exchange interaction (4) in the familiar
equilibrium case. For the Mott insulator at half-filling,
the static exchange interaction at zero temperature can be
obtained from a perturbation expansion in the hopping,
which yields jJaexj ¼ 2t20=U. In Fig. 1, we compare the
analytical value jJaexj (dashed lines) and the bare exchange
interaction jJ0exj ¼ jJ012j computed from the collinear
DMFT solution using Eq. (4) (red circles) as a function
of temperature for three values of U. In addition, we solve
the DMFT equations for the antiferromagnetic Mott
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insulator in a weak transverse field of strength Bx and
obtain an estimate jJcexj ¼ jBx=4hSxij by comparing the
canting hSxi of spins to the prediction from a rigid
macrospin model, Eq. (5), in the static limit (blue solid
disks). We choose Bx ¼ 0.64t20=U, such that the canting
angle at low temperature is about 10 degrees for all U. At
large U, we find excellent agreement between Jaex, J0ex, and
Jcex, where deviations between Jcex and Jaex are on the order
of ðt0=UÞ2, which also confirms the validity of the DMFT
approximation for studying exchange interactions. For
smaller U, the deviation of J0ex from Jcex becomes more
pronounced, up to 25% at U ¼ 4. The differences between
the two expressions of Eqs. (4) and (5) may have several
possible origins: (i) At small values of U, the rigid
macrospin model is no longer valid, because retardation
effects in Aðt; t0Þ become relevant, (ii) vertex corrections to
Eq. (2) become important, or (iii) J0ex is a nearest-neighbor
interaction while Eq. (5) also takes into account next-
nearest-neighbor terms. Below, we will study nonequili-
brium exchange at large values of U. Nevertheless, for
moderate U, where retardation effects to the exchange
become important, we can still use Eq. (5) as a heuristic
measure for Jex, in the sense that it is the best estimate of an
instantaneous exchange interaction which is in accordance
with an observed spin dynamics.
Next, we investigate how fast Jex can be modified under

electronic nonequilibrium conditions, which we generate
by suddenly changing U. It was recently demonstrated
that after such an interaction quench the order parameter
m quickly relaxes to a quasistationary but nonthermal
value [17] that is protected from further decay by the slow
recombination rate of doublons and holes [28–31]. This
transient state resembles properties of a photodoped
system in which charge carriers are created by a short
laser pulse. We will refer to the induced change of the
doublon and hole densities d and h with respect to their

equilibrium values d0 and h0 as photodoping
Δn ¼ dþ h − d0 − h0 ¼ 2ðd − d0Þ. The inset of Fig. 2
shows the evolution of the time-dependent nonequili-
brium exchange interaction (solid line) and order param-
eter (dashed line) for a quench U ¼ 4 → 8. [A Gaussian
window expð−s2=w2Þ of length w ¼ 10t0=π was used in
Eq. (3) to ensure a smooth cutoff of the upper integration
limit.] We find that jJ0exj, like m, becomes stationary
already on an electronic time scale, which shows the
emergence of a spin Hamiltonian on the time scale of a
few tens of inverse hoppings.
To study how effective Jex is modified, we evaluate it in

the quasistationary state after different excitation strengths
ΔU ¼ Uf −Ui ¼ 0;…; 4, with final Uf ¼ 8. The result is
shown by red open circles in Fig. 2 as a function of “photo-
doping” Δn, demonstrating a reduction of Jex to a value
significantly below the equilibrium difference J0exðUiÞ−
J0exðUfÞ. The results are independent of a Gaussian cutoff
in Eq. (3) for w ¼ 60t0=π. Only for the largest ΔU do we
find a slight dependence on w that indicates that J0ex is not
yet fully stationary. Furthermore, the blue lines in Fig. 2
show the equilibrium exchange interaction at chemical
doping for different temperatures. These results confirm
the conclusions obtained from analyzing the electronic
spectrum [17], that properties of the photodoped state with
added doublons and holes resemble those of the chemically
doped state with the same total number of carriers: Adding
doublons and holes causes an ultrafast weakening, or
“quenching” of the exchange interaction by an amount
comparable to that of chemical doping. Qualitatively, the
weakening of the antiferromagnetic exchange can result
from a lowering of the kinetic energy of mobile carriers in
a parallel spin alignment (for U ¼ ∞ and small doping
ferromagnetism is favored [32]).

U 4

U 8

U 16

2t0
2 U

formula
canted

0.05 0.10 0.15
0.1

0.2

0.3

0.4

0.5

temperature

ba
re

J e
x

FIG. 1 (color online). Bare exchange interaction as function of
temperature for different values U, computed from the formula
Eq. (4) (red open circles) and from the canted geometry Eq. (5)
(blue solid disks). For large U the calculations show excellent
agreement with the analytical result jJaexj ¼ 2t20=U indicated with
dashed lines.
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FIG. 2 (color online). Comparison of the nonequilibrium
exchange interaction (open circles) in the quasistationary
state after an interaction quench ΔU in the Bethe lattice with
the equilibrium exchange interaction of the chemically doped
model (solid symbols) for U ¼ 8 and different temperatures.
The inset shows the bare time-dependent exchange
interaction (solid line) and staggered magnetization (dashed
line) caused by the quench U ¼ 4 → 8.
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Photoexcitation.—To further demonstrate the possibility
of changing Jex in a setup that is closer to the laser
excitation of condensed-matter systems, we study the
Hubbard model driven by an external electric field. This
is implemented for the infinite-dimensional hypercubic
lattice with density of states DðϵÞ ¼ expð−ϵ2Þ= ffiffiffi

π
p

, with
the electric field pointing along the body diagonal [20,33].
Photoexcited carriers are created by a single-cycle pulse
EðtÞ ¼ E0 sinðωtÞ exp½−αðt − tcÞ2�, tc ¼ π=ω, α ¼ 4.6=t2c
with a Gaussian envelope and a center frequency of ω ¼ U.
To directly measure the transverse spin dynamics associ-
ated with Jex, we study the system in a canted geometry
induced by a homogeneous magnetic field Bx. Before laser
excitation, the system is prepared in equilibrium with a
canting angle determined by the balance of Bx and Jex.
When Jex is changed, this balance will be broken and a spin
resonance will be excited. Such spin resonances can, in
principle, be detected experimentally using magneto-
optical techniques [1] and THz spectroscopy [34]. In our
simulations, we extract the nonequilibrium exchange inter-
action by comparing the spin dynamics obtained within
DMFT to the rigid macrospin model; cf. Eq. (5). The results
of this approach are shown in Fig. 3, computed at U ¼ 8,
Bx ¼ 0.01, and initial temperature T ¼ 0.03. The top panel
shows that the sublattice magnetization is initially in the x-z
plane. Light to dark colors indicate excitation strengths
ranging from jE0j=t0 ¼ 1 to 5.5. The bottom panel shows
ΔJ0ex ∼ h _S1yi=hS1zi [cf. Eq. (5)], where h _S1yi is computed
from the time trace of hS1yðtÞi. We observe three different
time scales in our simulations: (i) Fast 1=U oscillations on
the time scale of the laser excitation, as most clearly seen in
the bottom panel. This characterizes the stabilization of the
local magnetic moments. (ii) Relaxation of the order
parameter and the exchange interaction. (iii) The onset
of rigid rotation of the spin sublattices at quasistationary
values jhS1ij and Jcex. We estimate the time t� that it takes
for Jcex to become stationary from Jcexðt�Þ − JcexðtmaxÞ < ε,
where ε is the numerical accuracy. The values t�, which are

indicated as dots in the bottom panel of Fig. 3, show that a
quasistationary state and rigid spin dynamics emerge after
a few tens of hoppings, similar as for the sudden change of
U. This relaxation time increases with the excitation
density, as the critical excitation for melting the antiferro-
magnetic order is approached, but it is much shorter than
the period of spin precession in the field, which supports
the interpretation that photoexcitation causes an ultrafast
quenching of Jex. Furthermore, we find that direct photo-
excitation has a similar effect as the interaction quench; i.e.,
the efficiency of the modification of Jex is determined by
the number of photoexcited carriers. This is demonstrated
in Fig. 4 by plotting the extracted exchange interaction in
the quasistationary state as a function of the photodoping,
together with equilibrium calculations in the canted geom-
etry with chemical doping. In the hypercubic lattice, we
observe that photoexcitation modifies Jcex slightly stronger
than chemical doping. In addition, there is a more pro-
nounced temperature dependence of Jcex in equilibrium.
Both effects might be related to a slightly different
dynamics of low-energy (photo-) doped carriers in the
Bethe lattice and the hypercubic lattice, where the latter
does not have a sharp band edge in the density of states.
In summary, we report that photoexcitation causes an

ultrafast quenching of the exchange interaction in a Mott
insulator. An effectively static Jex can be defined already
on the ultrafast time scale on the order of a few tens of
inverse hopping times, which is similar to the relaxation
time of the order parameter. The reduction of Jex is
comparable to that of a chemically doped state when
measured in terms of the total number of excited carriers.
These results demonstrate intriguing possibilities to con-
trol magnetic order without magnetic fields. Similar or
even more efficient ways to control Jex under nonequili-
brium conditions might be found by extending our work to
more complex multi-band systems such as the prototype
Mott-insulator V2O3 [35] and to materials with different
exchange mechanisms.

We thank K. Balzer, S. Brener, A. Secchi, M. I.
Katsnelson, A. V. Kimel, J. Kroha, A. Lichtenstein, and
Ph. Werner for fruitful discussions. The calculations were
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