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In three-dimensional turbulent flows, the flux of energy from large to small scales breaks time symmetry.
We show here that this irreversibility can be quantified by following the relative motion of several
Lagrangian tracers. We find by analytical calculation, numerical analysis, and experimental observation
that the existence of the energy flux implies that, at short times, two particles separate temporally slower
forwards than backwards, and the difference between forward and backward dispersion grows as t3. We
also find the geometric deformation of material volumes, defined by four points spanning an initially
regular tetrahedron, to show sensitivity to the time reversal with an effect growing linearly in t. We
associate this with the structure of the strain rate in the flow.
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In turbulent flows, far from boundaries, energy flows
from the scale at which it is injected, lI , to the scale at
which it is dissipated, lD. For intense three-dimensional
(3D) turbulence, lD ≪ lI, and the energy flux, ϵ, is from
large to small scales [1]. As a consequence, time symmetry
is broken, since the time reversal t → −t would also reverse
the direction of the energy flux. Exploring the implications
of this time asymmetry on the relative motion between fluid
particles is the aim of this Letter.
The simplest problem in this context concerns the

dispersion of two particles whose positions, r1ðtÞ and
r2ðtÞ, are separated by RðtÞ ¼ r2ðtÞ − r1ðtÞ. The growth
of the mean squared separation, hR2ðtÞi, forwards (t > 0)
and backwards (t < 0) in time is a fundamental question in
turbulence research [2] and is also related to important
problems such as turbulent diffusion and mixing [3,4].
At long times, both for t > 0 and t < 0, it is expected that
the distance between particles increases according to the
Richardson prediction as hR2ðtÞi ≈ gf;bϵjtj3 [4], with two
constants, gf and gb, for forward and backward dispersion,
respectively. The lack of direct evidence for the Richardson
t3 regime in well-controlled laboratory flows [5] or in
Direct Numerical Simulations (DNS) [4,6] makes the
determination of the constants gf and gb elusive, although
it is expected that gb > gf [4,7,8].
In this Letter we show that for short times the flow

irreversibility imposes a quantitative relation between
forward and backward particle dispersion. For particle
pairs, the energy flux through scales is captured by

�
d
dt

½v2ðtÞ − v1ðtÞ�2j0
�

¼ −4ϵ; ð1Þ

where v1ðtÞ and v2ðtÞ are the Lagrangian velocities of
the particles and the average is taken over all particle
pairs with the same initial separation, jRð0Þj ¼ R0, in the
inertial subrange (lD ≪ R0 ≪ lI). Equation (1) is exact in
the limit of very large Reynolds number 3D turbulent
flows [9–11] and can be seen as the Lagrangian version of
the Kolmogorov 4=5-law [1]. For short times, Eq. (1)
implies that backward particle dispersion is faster than the
forward case, with

hR2ð−tÞi − hR2ðtÞi ¼ 4ϵt3 þOðt5Þ: ð2Þ
The t3 power in Eq. (2) is strongly reminiscent of the
Richardson prediction, with the expectation that gb > gf
at longer times. The relation between the irreversibility
predicted by Eq. (2) and the one expected at longer times
(gb > gf), however, remains to be established.
Whereas the difference between backward and forward

pair dispersion at short times is weak (∝ t3), we found a
strong manifestation of the time asymmetry when inves-
tigating multiparticle dispersion. The analysis of the
deformation of an initially regular tetrahedron consisting
of four tracer particles [12,13] reveals a stronger flattening
of the shape forwards in time, but a stronger elongation
backwards in time. We relate the observed time asymmetry
in the shape deformation to a fundamental property of the
flow [14–17] by investigating the structure of the perceived
rate of strain tensor based on the velocities of the four
Lagrangian particles [18].
Our finding relies on analytical calculation, DNS, and

data from 3D Lagrangian particle tracking in a laboratory
flow. The experiments were conducted with a von Kármán
swirling water flow. The setup consisted of a cylindrical
tank with a diameter of 48.3 cm and a height of 60.5 cm,
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with counterrotating impellers installed at the top and
bottom. Its geometry is very similar to the one described
in Ref. [19], but with a slightly different design of the
impellers to weaken the global structure of the flow. At the
center of the tank, where the measurements were per-
formed, the flow is nearly homogeneous and isotropic. As
tracers for the fluid motion, we used polystyrene micro-
spheres of density ρ ¼ 1.06ρwater and a diameter close to
the Kolmogorov length scale, η. We measured the trajec-
tories of these tracers using Lagrangian particle tracking
with sampling rates exceeding 20 frames per τη, the
Kolmogorov time [20,21]. We obtained three data sets at
Rλ ¼ 270, 350, and 690 with corresponding Kolmogorov
scales η ¼ 105 μm, 66 μm, and 30 μm and τη ¼ 11.1 ms,
4.3 ms, and 0.90 ms, respectively. The integral length scales
of L ≈ 5.5 cm for the first two and L ≈ 7.0 cm for the last
data set are both smaller than the size of the measurement
volume, which is approximately ð8 cmÞ3. Many indepen-
dent, one-second recordings of ∼100 particles where
combined to generate sufficient statistics. For example,
the Rλ ¼ 690 data set contains 555,479 particle trajectories
lasting at least 20τη. Our experimental results are compared
to DNS data obtained from pseudospectral codes [22–24].
To study the dispersion between two particles, it

is more convenient to analyze the change in separation,
δRðtÞ ¼ RðtÞ −Rð0Þ, than the separation RðtÞ itself
[4,19,25]. We expand δRðtÞ in a Taylor series and average
over many particle pairs with a fixed initial separation
jRð0Þj ¼ R0 to obtain

hδRðtÞ2i
R2
0

¼ huð0Þ2i
R2
0

t2 þ huð0Þ · að0Þi
R2
0

t3 þOðt4Þ; ð3Þ

where uð0Þ and að0Þ are the relative velocity and accel-
eration between the two particles at time t ¼ 0. Equation (3)
generally applies to describe the motion of two particles in
any physical system. Using Eq. (1), which is specific to 3D
turbulent flows, reduces the t3 term in Eq. (3) to −2ðt=t0Þ3,
where t0 ¼ ðR2

0=ϵÞ1=3 is the (Kolmogorov) time scale
characteristic of the motion of eddies of size R0 [1].
Equation (3) can thus be expressed as

hδRðtÞ2i
R2
0

¼ huð0Þ2i
ðϵR0Þ2=3

�
t
t0

�
2

− 2

�
t
t0

�
3

þOðt4Þ: ð4Þ

For short times, the dominant behavior is given by the t2 term
in Eq. (4) [25], which is even in t and thus reveals no
asymmetry in time. The odd t3 term is the first to break the
t → −t symmetry. This is better seen from the difference
between the forward and backward dispersion,

hδRð−tÞ2 − δRðtÞ2i
R2
0

¼ −2
huð0Þ · að0Þi

R2
0

t3 þOðt5Þ

¼ 4ðt=t0Þ3 þOðt5Þ; ð5Þ

which is equivalent to Eq. (2). We note that the simple form
of Eq. (4), which suggests that the evolution of hδR2ðtÞi
depends on ðt=t0Þ alone, is accurate only up to O½ðt=t0Þ3�.
Not all higher-order terms in the Taylor expansion can be
reduced to functions of ðt=t0Þ [26].
To test Eq. (5), we identified particle pairs from our large

set of experimental and numerical trajectories with a given
initial separation R0 and studied the evolution of δRðtÞ2,
both forwards and backwards in time. One of the diffi-
culties of reliably measuring hδRðtÞ2i in experiments
comes from the finite size of the measurement volume
in which particles are tracked. The residence time of
particle pairs in the measurement volume decreases with
the separation velocity, inducing a bias [8,27]. We analyze
how this affects the results and show that the effect is weak
in [28]. The very good agreement between experiments and
DNS convinces us that the finite-volume bias does not alter
our results.
Figure 1 shows hδR2ð−tÞ − δR2ðtÞi, the difference

compensated by −ðhuð0Þ · að0Þi=2R2
0Þt3 using Eq. (5),

obtained from both the experiments and DNS at four
different Reynolds numbers. The DNS, Rλ ¼ 300 data
consisted of 32,768 particle trajectories in a statistically
stationary turbulent flow [22] over ∼4.5 large-eddy
turnover times, allowing particle pairs with a prescribed
size to be followed for a long period of time. The data all
show a clear plateau up to t ≈ t0=10, in complete agree-
ment with Eq. (5). At longer times, both the experimental
and DNS data decrease rapidly towards zero without
any sign of the plateau expected from the Richardson
prediction,

FIG. 1 (color online). The difference between the backward and
forward mean squared relative separation, hδRð−tÞ2 − δRðtÞ2i,
compensated using Eq. (5). The symbols correspond to experi-
ments: circles for Rλ ¼ 690 (R0=η ¼ 267, 333, 400), stars for
Rλ ¼ 350 (R0=η ¼ 152, 182, 212), and squares for Rλ ¼ 270
(R0=η ¼ 95, 114, 133). The lines correspond to DNS at Rλ ¼ 300
(R0=η ¼ 19, 38, 58, 77, 92, 123).
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hδRð−tÞ2 − δRðtÞ2i
R2
0

¼ ðgb − gfÞ
�
t
t0

�
3

: ð6Þ

While the slightly faster decay of the experimental data
for t≳ t0 could be due to a residual finite-volume bias,
this should not affect the DNS data. Previous experi-
ments at Rλ ¼ 172 with initial separations in the range
4 ≤ R0=η ≤ 28 suggested ðgb − gfÞ ¼ 0.6� 0.1 [8].
Figure 1 does not provide evidence for this value,
although it does not rule out the existence of a plateau
at a lower value of ðgb − gfÞ. Note that Eq. (6) predicts
the time irreversibility caused by the energy flux to
persist into the inertial range and remarkably to grow as
t3 as well. It is therefore tempting to draw an analogy
between Eq. (5), which is exact and valid at short times,
and the expected Richardson regime at longer times [29].
The fact that a plateau corresponding to ðgb − gfÞ would
be substantially lower than the value of 4 given by
Eq. (5) indicates that the connection between the short-
time behavior in Eq. (5) and the longer-time behavior in
Eq. (6) requires a deeper understanding.
The time irreversibility predicted by Eq. (5) for particle

pair separations grows slowly at small times, ∝ t3. We
discuss below a stronger (∝ t) manifestation of the time
irreversibility by analyzing the evolution of four particles
that initially form a regular tetrahedron. Additionally, the
motion of tetrahedra provides insight into the structure of a
flow [12,13,17,18,30] and in fact into the origin of the
irreversibility observed in particle pair separation.
The geometry of a set of four points ð x1;… x4Þ, i.e., a

tetrahedron, can be effectively described by three vectors.
The center of mass, xC, of the tetrahedron is immaterial
in a homogeneous flow. The shape tensor, Gij ¼P

aðxa;i − xC;iÞðxa;j − xC;jÞ, where xa;i is the ith compo-
nent of xa, provides an effective description of the tetrahe-
dron geometry. The radius of gyration of the tetrahedron,
R2ðtÞ ¼ trðGÞ ¼ 1

4

P
a<bj xaðtÞ − xbðtÞj2, is simply given

by the trace of G. The shape is described by the three
eigenvalues gi of G, with g1 ≥ g2 ≥ g3. For a regular
tetrahedron, where all edges have the same length, all
three eigenvalues are equal. For g1 ≫ g2 ≈ g3, the tetrahe-
dron is needlelike, while g1 ≈ g2 ≫ g3 represents a pancake-
like shape.
The evolution of G can be conveniently written in the

compact form [17]

d
dt

GðtÞ ¼ MðtÞGðtÞ þGðtÞMTðtÞ; ð7Þ

where MðtÞ is the perceived velocity gradient tensor that
describes the turbulent flow field seen by the 4 points
[18,30]. The perceived velocity gradient reduces to the
usual velocity gradient when the tetrahedron becomes
smaller than the Kolmogorov scale, η [17]. We solve
Eq. (7) for short times using a Taylor expansion around
t ¼ 0 and taking Gijð0Þ ¼ ðR2

0=2Þδij as the initial

condition; i.e., the tetrahedra are initially regular with edge
length R0. The solutions for the average size and shape are

hR2ðtÞi ¼ R2
0

2

�
3þ 2trhS2

0it2

þ 2tr

�
2

3
hS3

0i þ hS0
_S0i

�
t3 þOðt4Þ

�
ð8Þ

and

hgii ¼
R2
0

2
½1þ 2hλ0;iitþ ð2hλ20;ii þ h _S0;iiiÞt2 þOðt3Þ�:

ð9Þ
At the orders considered, the evolution of the tetrahedron
geometry depends only on the perceived rate-of-strain
tensor, S0 ¼ Sð0Þ ¼ 1

2
½Mð0Þ þMð0ÞT �, whose eigenval-

ues are sorted in decreasing order (λ0;1 ≥ λ0;2 ≥ λ0;3), and
on its time-derivative, _S0 ¼ d

dtSðtÞj0. In Eq. (9), all terms
are in fact expressed in the eigenbasis of S0.
We first note that the radius of gyration, R2ðtÞ, can also

be expressed as an average over the squares of the edge
lengths of the tetrahedron. Thus, Eq. (8) must be consistent
with Eq. (3). This implies that trhS2

0i ¼ 3
2R2

0

huð0Þ2i and

trð2
3
hS3

0it þ hS0
_S0iÞ ¼ 3

2
huð0Þ · að0Þi, which we explicitly

confirmed with our data. Furthermore, the incompressibil-
ity of the flow imposes thatM (and hence S) is traceless on
average, which means that hλ0;1i ≥ 0 and hλ0;3i ≤ 0. The
generation of small scales by turbulent flows, which plays a
key role in the energy cascade, implies that the intermediate
eigenvalue of the rate of strain tensor is positive [14]. This
property also applies to the perceived velocity gradient
tensor in the inertial range [17] (Fig. 2). Consistent with

FIG. 2 (color online). Eigenvalues of the perceived rate-of-
strain tensor, λ0;it0, ði ¼ 1; 2; 3Þ, defined on tetrahedra with
different sizes R0=η. Open symbols are from experiments at
Rλ ¼ 690 and 350 and filled symbols from DNS at Rλ ¼ 300.
The solid lines are the corresponding averages for i ¼ 1 (top), 2
(middle), and 3 (bottom).
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standard Kolmogorov phenomenology [1], our data suggest
that hλ0;iit0 is approximately constant over the range of
Reynolds numbers and inertial scales covered here. For
initially regular tetrahedra of edge length R0, Eq. (9)
predicts that hgiðtÞi ¼ 1

2
R2
0 at t ¼ 0 and that hgiðtÞi grows

linearly as R2
0hλ0;iit for small t. The tetrahedra obtained

experimentally and numerically at Rλ ¼ 300, however, are
not strictly regular, but correspond to a set of four points
whose relative distances are equal to within a fixed relative
tolerance in the range 2.5–10%. Figure 3(a) shows that the
linear behavior predicted by Eq. (9) is observed when
the tetrahedra are regular, as those obtained from the
Johns Hopkins University database [23,24] (Rλ ¼ 430),
or when the tolerance is reduced. The time asymmetry in
this shape evolution seen from the eigenvalues of G in
Fig. 3 originates from the positive value of hλ0;2i. For
regular tetrahedra, Eq. (9) shows that in the eigenbasis of
S0, the largest eigenvalue of G is g1 for t > 0 and g3 for
t < 0. The difference between the largest eigenvalues at
t > 0 (forwards in time) and at t < 0 (backwards in time) is
thus R2

0hðλ0;1 þ λ0;3Þti ¼ −R2
0hλ0;2ti. In fact, the difference

between the backward and forward growth rates of the
intermediate eigenvalue, hg2i, shows an even stronger
asymmetry:

hg2ðtÞ − g2ð−tÞi=½R2
0ðt=t0Þ� ¼ 2hλ0;2it0 þOðt2Þ: ð10Þ

The expected plateau of 2hλ0;2it0 is seen in Fig. 3(b) when
the tetrads are regular, or when the tolerance on the initial
edge lengths is reduced.

In summary, we have shown that the relative motion
between several Lagrangian particles reveals the funda-
mental irreversibility of turbulent flows. At short times, the
time asymmetry of two-particle dispersion grows as t3,
which is deduced from an identity derived from the Navier-
Stokes equations in the large Rλ limit that expresses the
existence of a downscale energy cascade. Our study,
however, leaves open the question of the existence of
two different constants governing the dispersion forwards
and backwards in time in the Richardson regime [7,8]. A
stronger manifestation of the time asymmetry, ∝ t, was
observed by studying the shape deformation of sets of four
points. This asymmetry can be understood from another
fundamental property of turbulence, namely the existence
of a positive intermediate eigenvalue of the rate-of-strain
tensor [14,17]. Thus, remarkably, the manifestations of
irreversibility are related to fundamental properties of the
turbulent flow field.
The time-symmetry breaking revealed by multiparticle

statistics is a direct consequence of the energy flux through
spatial scales (see also [31]). The very recently observed
manifestation of irreversibility [32] when following only a
single fluid particle, where an intrinsic length scale is
lacking, thus presents an interesting challenge to extend the
analysis presented here. We expect that further insights into
the physics of turbulence can be gained by analyzing the
motion of tracer particles.

We are thankful to Dr. G. Good for his careful reading of
the manuscript. We acknowledge the support from the Max
Planck Society. A. P. also acknowledges ANR (Contract
TEC 2), the Humboldt Foundation, and the PSMN at the
Ecole Normale Supérieure de Lyon.

(a) (b)

FIG. 3 (color online). Time-asymmetry revealed from the geometry of tetrahedra. (a) The eigenvalues of the shape tensor G, hgiðtÞi,
divided by R2

0, such that initially regular tetrads with size R0 start at gið0Þ=R2
0 ¼ 1=2. (b) The difference in the backward and forward

growth rates of the intermediate eigenvalue, ½hg2ðtÞ − g2ð−tÞi�=½R2
0ðt=t0Þ�, behaves as 2hλ2;0it0 to leading order according to Eq. (3). The

horizontal thin black line indicates the value of 2hλ0;2it0 ≈ 0.38 as given by Fig. 2. The experimental results (Rλ ¼ 690) and the DNS at
Rλ ¼ 300, were obtained with tetrads close to regular, with a small tolerance ΔR0 on the edge lengths, indicated in the legend. The
dashed lines (DNS, Rλ ¼ 430) were obtained with regular tetrads. The effect of ΔR0 ≠ 0 is the strongest at small t and diminishes when
ΔR0=R0 decreases.
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