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Laser-cooled and trapped ions can crystallize and feature discrete solitons that are nonlinear,
topologically protected configurations of the Coulomb crystal. Such solitons, as their continuum
counterparts, can move within the crystal, while their discreteness leads to the existence of a gap-
separated, spatially localized motional mode of oscillation above the spectrum. Suggesting that these
unique properties of discrete solitons can be used for generating entanglement between different sites of the
crystal, we study a detailed proposal in the context of state-of-the-art experimental techniques. We analyze
the interaction of periodically driven planar ion crystals with optical forces, revealing the effects of
micromotion in radio-frequency traps inherent to such structures, as opposed to linear ion chains. The
proposed method requires Doppler cooling of the crystal and sideband cooling of the soliton’s localized
modes alone. Since the gap separation of the latter is nearly independent of the crystal size, this approach
could be particularly useful for producing entanglement and studying system-environment interactions in
large, two- and possibly three-dimensional systems.
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The concept of entanglement is crucial for the study of
many-body quantum phenomena, and is a key ingredient
in quantum computation, simulation, communication, and
metrology [1–5]. Significant progress has been achieved in
experiments with a wide variety of solid-state and atomic
systems [6–9], and extraordinary control has been demon-
strated with systems of trapped ions [10,11]. At sufficiently
low temperatures the ions self-arrange in a Coulomb crystal
which can take different forms, e.g., a one-dimensional (1D)
chain or a quasi-2D zigzag configuration [12,13]. Proof-of-
principle experiments of basic quantum information process-
ing in 1D ion crystals, with up to ∼15 ions [14], have set the
state-of-the-art in the field, and scaling up to larger numbers
and 2D systemswill be the next important challenge [15,16].
As suggested in [17], stable topological defects in zigzag-

shaped ion crystals manifest properties of solitons (kinks),
extensively studied in, e.g., sine-Gordon field theory [18]
and the discrete Frenkel-Kontorova model [19]. Solitons
carry localized collective motional “internal modes” bound
to the soliton, which have been proposed for carrying
quantum information and entanglement [20], while entan-
glement inmacroscopic coordinates of colliding solitons has
been studied in [21]. Discrete solitons in zigzag crystals can
be spatially extended configurations or highly localizedwith
a size of a few ions. In the latter case they manifest a high-
frequency localized motional mode, spectrally separated
from the other phonons by a gap that is nearly independent
of the crystal size [17]—a property which plays a key role
in the present work. Recently such structures have been
experimentally created, positioned, and stabilized in linear

Paul traps [22–28]. In linear multipole traps [29–31] and
in circular traps [32–34], ions can crystallize in one or more
rings, which can be advantageous for studying various
effects [35–39], in particular, discrete solitons [17,40,41].
In this Letter, we propose to employ discrete solitons for the

generation anddistributionof entanglementwithin a systemof
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FIG. 1 (color online). Discrete soliton configurations (numeri-
cally simulated) in different radio-frequency traps with 31 ions,
the arrows depicting the components of the high-frequency
localized normal mode. (a) A planar crystal in a linear trap
(top-view), (b) a two-species planar crystal (top-view), which can
form in a quadrupole trap with a ring geometry (using, e.g., 40Caþ
and 43Caþ), or in a linear multipole trap with ions of significantly
different masses, e.g., Caþ and Mgþ [see also Fig. 3(d)], (c) two
rings in a multipole trap (bird’s-eye view). The crystals in (b) and
(c), with a total odd number of ions, are the global minimum
configuration and are topologically protected. The lighter ions
(black circles) reside at a smaller radius and are used as qubit.
Heavier ions (red diamonds) are used for sympathetic cooling and
structural manipulations.
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manyparticles in a thermalmotional state. The key ingredients
of our proposal are as follows: (i) Two- and multiqubit
entangled states are generated locally at the position of the
soliton, utilizing the gapped soliton modes. (ii) To entangle
other qubits, the soliton can be translated deterministically
along the crystal with step (i) repeated, thereby allowing
remote qubits to be sequentially entangled. (iii) Circular
crystal topologies provide a flexible setup for combining
cooling, entangling, and moving the soliton in a robust
manner.
We study in detail the above ideas in the setup of a crystal

of trapped ions. Steps (i)—(ii) can be implemented in linear
Paul traps with existing technology. Entangling a few ions
within a large crystal necessarily requires to decouple them
from the rest of the crystal [42,43]. Based on the localized
nature of the kink modes, collective laser addressing suffices
for entangling electronic qubit levels with a small subset of
ions, without the need to spatially move them or cool the
entire crystal close to the motional ground state, as the gap
separation of the high-frequency mode allows to spectrally
resolve it within a dense spectrum of modes. Circular crystal
topologies [(iii)] can be realized in ring and linear multipole
ion traps, and, in particular, a two-species crystal [Figs. 1(b)–
1(c)] can be advantageous for the control of the soliton
motion and continuous cooling during the gate operation.
Entanglement generation.—We first consider a single

kink within a planar zigzag crystal of a few tens of ions in a
linear Paul trap. Figure 1(a) shows a zoom in on the center
of the kink configuration, with the arrows depicting the ion
components of the high-frequency vibrational normal mode
to be employed as the localized “quantum bus” used to
entangle qubits in the Sørensen Mølmer gate [44,45]. In the
following we will show that a wide laser beam is sufficient
for addressing only the qubits stored in the three center
ions (denoted 1,2,3) without coupling to the other ions. The
unitary transformation implemented on these qubits is, up
to local qubit phases,

Ueff ¼ exp

�
i
π

8α
S2
�
; S≡ ~σy;1 þ α ~σy;2 þ ~σy;3; ð1Þ

where ~σy;i ≡ σy;i cos ~ϕi − σx;i sin ~ϕi are Pauli matrices
acting on qubit i, with ~ϕi depending on the position of
each ion and α ≠ 0 depends on the contribution of the
bus mode, and is also affected by the amplitude of the radio-
frequency (rf) micromotion [see Eq. (4)]. Starting with the
initial state jgggi (where jgi and jei denote the electronic
qubit states), Ueff creates a Greenberger-Horne-Zeilinger
(GHZ)-type state of 3 qubits (whose three-tangle measure
[46,47] equals 1), jgggiþeiθ1 jgeeiþeiθ2 jegeiþeiθ3 jeegi,
where θi are determined by ϕi defined below, and ½Ueff �2
creates an entangled state of qubits 1 and 3 (maximally
entangled for α ¼ 2), with qubit 2 disentangled.
Micromotion treatment.—Taking into account the time-

dependent potential of Paul traps, the coordinates of ion i can
be expanded as ~RiðtÞ ¼ ~Rπ

i ðtÞ þ δ~RiðtÞ. The first term is the

classical driven solution which is the dynamical equivalent
of aminimum-configuration location [48]. The ions oscillate
about an average position at the rf frequency, which after a
conventional rescaling of time, becomes Ωrf ≡ 2, such that
~Rπ
i ðtÞ ¼

P∞
n¼−∞

~B2n;ie2int is π periodicwith ~B2n;i constants.
The linearized ion deviations from the periodic solution
δ~RiðtÞ are canonically quantized and can be expressed in
terms of linear combinations of creation and annihilation
operators of decoupled phonons by using a (“Floquet-
Lyapunov”) time-dependent transformation [48,49].
The interaction Hamiltonian of ion qubit i, coupled by

the laser to the phonon mode j, is given in the interaction
picture and rotating wave approximation (with respect to
the laser), by

Hi ¼
1

2
ℏΩiðtÞe−iϕiðtÞσþ;ie

iηjfλji ðtÞb†j ðtÞþλji ðtÞ�bjðtÞg þ H:c:;

ð2Þ
where σþ;i is the qubit raising operator, bjðtÞ ¼ bjð0Þe−iωjt

is the phonon annihilation operator, and ηj is the Lamb-
Dicke parameter of the phonon whose secular frequency is
ωj. The time dependence of the trapping potential enters
into Eq. (2) in three ways (as compared with a pseudopo-
tential approach), which we analyze concisely [50]. The
secular frequencies ωj are shifted, which we account for by
using the exact mode frequencies in rf traps [48,51].
The periodic modulation of the laser’s wavefront phase
at the ion’s position, given by ϕiðtÞ ¼ ϕL − ~k · ~Rπ

i ðtÞ, with
ϕL the laser’s optical phase and ~k its wave vector, leads to a
significant effect on gates in the current setting, as detailed
below. The mode coefficients λjiðtÞ which appear in Eq. (2)
are in general periodic functions of time, but can be
replaced by the leading order (constant) term ~λji in the
case of the bus mode [50].
For the Sørensen Mølmer gate using bichromatic cop-

ropagating laser beams we set for the Rabi frequency of the
interaction, ΩiðtÞ ¼ Ωðeiδt þ e−iδtÞfðtÞ where Ω can be
tuned by the laser intensity (the laser profile assumed to be
uniform), fðtÞ is a window function smoothly turning on
and off the interaction [45], which must be synchronized
with the phase of the rf trapping potential, and δ is the laser
detuning from the qubit transition frequency. With the
Lamb-Dicke coefficient of order 10−2, we can expand the
Hamiltonian of Eq. (2) and obtain to first order

HI ≈
X
i

1

2
ℏΩiðtÞJ0ð2~ky ~B2;i;yÞ

× ½ ~σx;i − ηj ~λ
j
i ½ðb†jðtÞ þ bjðtÞ� ~σy;i�; ð3Þ

where each ion’s phase within the laser has been absorbed
into the Pauli matrices rotated in the xy qubit plane by the
angle ~ϕi ≡ ϕL − ~k · ~B0;i, as defined following Eq. (1). The
Bessel function factor accounts for the phase modulation
caused by each ion’s micromotion oscillation [50,52].
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To avoid any significant processes involving other
modes, the difference of the laser detuning from the bus
mode frequency (ϵ ¼ ω1 − δ, where j ¼ 1 is the high-
frequency mode) is chosen to be much smaller than the gap
to the other phonons (the gap is ∼1=12 of ω1, see below).
This requires to terminate the gate operation after (multi-
ples of) ω1=jϵjmode periods to get the qubits in a pure state
disentangled from the phonon. The effective interaction
induced by HI at the time of first disentanglement of the
phonon from the qubits, t� ¼ 2π=jϵj, is given by UIðt�Þ ¼
expfiθt�S2g with S defined in Eq. (1), and choosing the
parameters such that θt� ¼ π=8α gives Ueff . The amplitude
factor of ion 2 in Eq. (1) is then

α ¼ ~λj2=½~λj1J0ð2~ky ~B2;1;yÞ�; ð4Þ

where, since the middle ion performs no micromotion,
J0ð0Þ ¼ 1 in the nominator of Eq. (4). If the micromotion
phase modulation [50] did not exist, the phonon compo-
nents could be chosen such that jαj ¼ 2, with ½Ueff �2
creating a maximally entangled EPR pair. However, the
rf modulation turns out to be non-negligible and for the
chosen parameters gives jαj ¼ 2.22, so the resulting pure
state is approximately 1ffiffi

2
p ð0.92jggi þ 1.075ijeeiÞ.

Simulation parameters.—We consider 40Caþ ions with
the dipole-forbidden transition at 729 nm serving as
qubit. The secular trapping frequencies (with the axes
defined in Fig. 1) are ωx ¼ 2π×700 kHz, ωy ¼ 8.38ωx≈
2π×5.87MHz, and ωz=ωy ¼ 1.16. The rf frequency
is Ωrf¼2π×80.8MHz and the Mathieu parameter
qy¼0.22. The high-frequency mode has ω1 ¼ 12.02ωx≈
2π × 8.42 MHz, the gap is ω1=ω2 ≈ 1.085 or equivalently
ω1 − ω2 ¼ 0.95ωx ≈ 2π × 0.66 MHz, and ϵ≡ ω1 − δ ¼
0.004ω1 (δ being the laser detuning from the electronic
transition frequency), making ϵ ∼ 1=20 of the gap. The low
frequency mode hasωlow ¼ 1.47ωx ≈ 2π × 1.03 MHz. The
Rabi frequency is Ω ¼ 0.1225ω1 ≈ 2π × 1.03 MHz. The
Lamb-Dicke coefficient multiplied by the laser projection
on the bus mode component for ion 1 gives η1 ~λ

1
1 ≈ 0.0121,

and the factor on the middle qubit, is according to Eq. (4),
α¼−0.0237=½−0.0121J0ð−2×0.35Þ�≈−2.22. The laser
propagation direction is chosen such that ~λ1i ≲ 1=100 for
the bus mode on all ions except the 3 relevant ones, and
~λji ≲ ~λ1i =5 for those ions on off-resonant modes (j ¼ 2; 3,
the only ones capable to contribute), making the effective
relative gate strength on those modes of order 10−3.
Open quantum system effects.—The bus mode is coupled

to the other crystal modes (viewed as a thermal bath)
mostly through three-phonon processes which involve the
localized low-frequency mode [Fig. 2(b)] and another
mode from the bath [17]. We first integrate the non-
Markovian master equation [17] for the bus mode coupled
to the bath of all other modes, taking different initial states.
We observe recoherences of the bus mode state which can
be controlled by tuning the nonlinear resonances of the

localized modes. Such aspects are promising for inves-
tigating open quantum system dynamics [53,54]. By cool-
ing the localized modes close to the ground state, the
strength of the nonlinear processes can be significantly
decreased. This is technically feasible since the localized
modes are gapped and hence individually addressable (the
kink has one in-plane and one out-of-plane low-frequency
mode, whose frequencies can be controlled by varying ωy
and ωz, respectively). Thereby the nonlinear coupling of
the bus mode can be approximated by a small effective
heating rate of the mode from the ground state, which we
extract (conservatively) and then in the second step plug
into the Markovian master equation

_ρðtÞ ¼ −
i
ℏ

�X
i

HiðtÞ; ρðtÞ
�
− L½ρðtÞ�; ð5Þ

where ρ is the combined density matrix of the qubits
and the phonon, Hi is defined in Eq. (2), and L½ρðtÞ� is a
Lindbladian part [55] which introduces the effective heat-
ing of the bus mode. The fidelity of the entangled state
creation (calculated using [56]) is depicted in Fig. 2.
Examining the evolution without the bath, the 3 qubits

and the bus mode become entangled, and the average
phonon number grows up to 0.78 at t�=2. At t�, the qubits
and phonon disentangle and the phonon returns (ideally) to
the ground state. For the chosen parameters the 3-qubit
entangled state can be generated with about 97.4% fidelity
(Fig. 2), and an entangled pair can be created in qubits 1
and 3 at time 2t� with nearly twice the infidelity. The
heating rate depends only weakly on the number of ions
(see Table I), and the resulting entangling infidelity remains
roughly constant for 60–150 ions; with 151 ions, a fidelity
of 93.3% was simulated (without a full optimization of
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nonlinear mode heating during the generation of the entangled
GHZ-type state of 3 qubits within a 31-ion crystal in a linear Paul
trap, with respect to the ideal final state, from an integration of the
master equation in Eq. (5) using the exact Hamiltonian of Eq. (2),
when cooling the high- and the low-frequency localized modes to
the ground state. A measure for the purity (trρ2bus) of the bus mode
is also presented—in the ideal case it would return to its initial
pure state at the end of the gate (after ∼250 mode oscillations).
(b) The spatial components of the in-plane low-frequency
localized mode.
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the parameters). On the other hand, the nonlinear coupling
drops with increasing the trapping frequencies, due to
lower excitations of the bath modes; when doubling the
axial trap frequency to ωx ¼ 2π × 1400 kHz (and scaling
all other frequencies accordingly), the GHZ-type state can
be created with a fidelity of 98% (with 31 ions).
Circular topologies.—In circular crystals the kink is

topologically protected for an odd number of ions. Figure 3
depicts a method for entangling remote qubits in a crystal of
two different ion species. The light ions of the inner ring
(black circles) are used to store logical qubits, while the
heavier ions in the outer ring (red diamonds) are used for
sympathetic cooling [57,58] and for controlling the motion
of the soliton. By varying the radial trapping potential, a
highly localized kink can be transformed into an extended
one [24,27,28], with qubit ion 1 from the inner ring
embedded in the outer ring [Figs. 3(b) and 3(e)]. The
motion of this ion can be controlled by exciting a coherent
state [59,60] of the low-frequency mode, with the phase
accurately timed with the variation of the trapping poten-
tial, which also puts the soliton into motion in the crystal,
as we demonstrate by numerically simulating the classical
equations of motion [50]. Furthermore, the low-frequency
mode can be continuously cooled during the gate operation,
reducing the nonlinear coupling of the modes, and sophis-
ticated ideas for continuous cooling of the bus mode can
also be explored [61]. An EPR pair of the two logic ions 1
and 2 can be generated on the high-frequency bus mode
using a tangential laser [Fig. 3(d)], which will have a
negligible affect on neighboring qubits ions, whose mode
components are orthogonal. Single-qubit rotations can be
performed on the logic ion in the outer ring of the extended
kink configuration [Fig. 3(e)], using a micromotion side-
band [52]. In this way, a circular topology incorporating a
movable discrete soliton provides an elegant possibility of
entangling remote qubits in a large, thermal environment. A
full scale algorithm would require higher gate fidelities than
calculated above, and it is beyond the scope of the current
work to investigate how these may be achieved, possibly by
using faster gates which result in smaller decoherence.
Summary and outlook.—We proposed and analyzed in

detail a method for generating entanglement using solitons

in a system of N ≈ 30–150 ions. The approach is largely
insensitive to the number of trapped ions. In particular, the
gap-separated high-frequency internal mode is very weakly
dependent on N and furthermore, the cooling requirements
are sideband cooling of only the localized modes, while
Doppler cooling the crystal. We believe therefore, that a
proof-of-principle experiment is feasible within current
linear Paul traps. From the fundamental perspective of
the system-environment decoherence problem, this could
then provide the intriguing possibility of exploring in a
controlled fashion the generation of a pure entangled state
and its subsequent decoherence mechanism, with non-
Markovian effects such as coherence recurrences. Our
proposal for transporting entanglement in a lattice by
controlling the motion of a nonlinear, topological excita-
tion, within the circular topology implementation, is
currently experimentally more challenging. However, we
hope that together with other proposals involving circular
geometries [36–38], it would provoke further research.
Finally, it could be interesting to study the present ideas in
the context of other systems as well, such as zigzag crystals
of electrons in 1D quantum wires [62], dipolar gases [63],
or dark solitons realized with cold atoms [64].
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FIG. 3 (color online). Entangling remote pairs of ions in circular
crystals. Starting with a localized soliton configuration (a), similar
to that of Fig. 1(b), qubits ions 1 and 2 are entangled using the
localized bus mode (d). Decreasing the radial trapping frequency,
an extended soliton is formed (b), in which one of the two qubit
ions (black circles) is pushed into the outer ring of the wide zigzag.
The kink in the outer ring can be pushed to “slide” over the internal
ring, carrying with it qubit ion 1, one lattice site (e). The radial
trapping can be increased and the kink can be pinned after having
reached a desired position (c), with its modes cooled and used to
perform a gate between qubit 1 and its new neighbor, qubit 3.

TABLE I. Rate of nonlinear heating of the bus mode from the
ground state, as function of the number of ions in the crystal,
showing the increase of the average phonon number, per
oscillation period of the mode, due to its coupling to the bath
of all other modes, calculated using a non-Markovian master
equation (see text). The radial trapping frequency was held fixed
while the axial frequency was decreased with ion number to give
configurations with similar spatial and spectral kink properties.
The parameters were only optimized for the case of 31 ions.

Number of ions 31 61 91 121 151

Rate ð×10−4Þ 0.75 2.2 2.0 2.0 1.8
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