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We discuss an extension of the standard model by fields not charged under standard model gauge
symmetry in which the electroweak symmetry breaking is driven by the Higgs quartic coupling itself
without the need for a negative mass term in the potential. This is achieved by a scalar field S with a large
coupling to the Higgs field at the electroweak scale which is driven to very small values at high energies by
the gauge coupling of a hidden symmetry under which S is charged. This model can remain perturbative all
the way to the Planck scale. The Higgs boson is fully standard-model-like in its couplings to fermions and
gauge bosons. However, the effective cubic and quartic self-couplings of the Higgs boson are significantly
enhanced.
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Introduction.—With the discovery of the Higgs boson at
the Large Hadron Collider (LHC) [1,2], all the couplings in
the standard model (SM) of particle physics are now
known. The two parameters of the Higgs potential with
negative quadratic term that destabilizes the potential at the
origin, triggering the electroweak symmetry breaking, and
the positive quartic term that stabilizes the potential at large
scales,

VðHÞ ¼ m2H†H þ λHðH†HÞ2; ð1Þ
m2 < 0, can be determined from the vacuum expectation
value (vev) of the Higgs field, v≃ 246 GeV, previously
known from masses of W and Z bosons, and the Higgs
boson mass mH ≃ 125 GeV, through well-known rela-
tions: the condition for the minimum, −m2 ¼ λHv2, and
the formula for physical Higgs boson mass, m2

H ¼ 2λHv2.
In addition, the Higgs quartic coupling inferred from
the measurement of the Higgs boson mass λð2ÞSM ¼ λH
also determines the strength of self-interactions of the

Higgs boson in the SM, namely, the cubic λð3ÞSM and quartic

λð4ÞSM Higgs couplings,

λð2ÞSM ¼ λð3ÞSM ¼ λð4ÞSM: ð2Þ
However, confirming this prediction, and gaining confidence
that the electroweak symmetry breaking is indeed described
by the potential in Eq. (1), will be very challenging at the

LHC. Measuring λð3ÞSM with 20% precision might require a
linear collider [3,4], and there are currently no prospects to

measure λð4ÞSM. Models for physics beyond the SM typically
do not violate relation (2) by more than 25% [5].
A simple alternative to negative mass term triggering

spontaneous symmetry breaking, proposed a long time ago

by Coleman and Weinberg, is the idea that radiative
corrections to the quartic termdestabilize theHiggs potential
at the origin [6]. In the Coleman-Weinberg (CW) mecha-
nism, the mass term is set to zero, and thus the model has
one less parameter and is classically scale invariant. The
quartic coupling of a scalar field, starting from a positive
value at high energies, is driven through renormalization
group (RG) evolution to negative values at low energies.
However, in the SMdue to large top quarkYukawa coupling,
the RG running of the Higgs quartic coupling is exactly
opposite and the CW mechanism cannot be realized. It has
also been difficult to realize the CW mechanism for λH in
extensions of the SM. Large couplings of new fields to
the Higgs boson must exist in a given extension, and this
makes the theory nonperturbative already at or very near
the electroweak (EW) scale [7,8]. There is no example of a
model inwhich the EWsymmetry breaking is fully triggered
by radiative corrections to λH, which would remain pertur-
bative significantly above the EW scale.
In this Letter, we provide the first such model which can

remain perturbative all the way to the Planck scale. We
show that, in a simple extension of the standard model by
fields not charged under standard model gauge symmetry,
the EW symmetry breaking can be driven by the Higgs
quartic coupling itself without the need for a negative
mass term in the potential. This is achieved by a scalar
field S with a large (but perturbative) coupling to the
Higgs field at the EW scale which is driven to very small
values at high energies by the gauge coupling of a hidden
symmetry under which S is charged. The Higgs boson is
fully SM-like in its couplings to fermions and gauge
bosons. The effective cubic and quartic self-couplings of
the Higgs boson are, however, dramatically modified from
SM predictions:
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λð3ÞCW ¼ 5

3
λð2ÞCW; λð4ÞCW ¼ 11

3
λð2ÞCW; ð3Þ

in the leading order and are subject to potentially
significant corrections. We call the Higgs boson with
these properties Coleman-Weinberg Higgs.
The scenario we discuss is unique and easily distinguish-

able from singlet extensions of the SM in which the CW
mechanism is utilized to generate a vev of the extra singlet
which directly participates in EW symmetry breaking
[9–11]. For recent discussions in a variety of contexts,
see also Refs. [12–14]. In our model, the extra singlets are
merely spectators. They do not get vevs and do not directly
participate in EW symmetry breaking.
Setting the mass term to zero and working in the unitary

gauge, HTðxÞ ¼ ð1= ffiffiffi

2
p Þ ð0;ϕðxÞÞ, the potential can be

written in terms of real scalar field ϕ as VeffðϕÞ ¼
1
4
½λHðμ ¼ aϕÞ þ δλH�ϕ4e4ΓðaϕÞ, where the a is a function

of couplings, δλHðμÞ is the radiative correction (both will
be given after specifying the model), and ΓðμÞ ¼
R μ
MZ

d ln μ0γðμ0Þ with γ the Higgs field anomalous dimen-
sion. The condition for the minimum in terms of λ̂H ≡
ðλH þ δλHÞe4Γ is

dVeff

dϕ

�

�

�

�

ϕ¼v
¼
�

λ̂Hþ λ̂0H
4

�

ϕ3

�

�

�

�

ϕ¼v
¼ 0→ λ̂Hþ λ̂0H

4
¼ 0; ð4Þ

where λ̂0H ¼ ϕdλ̂H=dϕ. The physical Higgs mass originates
from the second derivative of the potential,

m2
H ¼ d2Veff

dϕ2

�

�

�

�

ϕ¼v
¼

�

3λ̂H þ 7

4
λ̂0H þ 1

4
λ̂00H

�

ϕ2

�

�

�

�

ϕ¼v

¼
�

−4λ̂H þ 1

4
λ̂00H

�

v2 ¼
�

λ̂0H þ 1

4
λ̂00H

�

v2; ð5Þ

and it receives the momentum dependent corrections that
we include in the numerical results. In this Letter, we keep
all the terms coming from derivatives of the effective
potential so that the equations are valid beyond one loop.
In analogy with the SM, we define the coupling

λð2ÞCW ≡ 1

2v2
d2Veff

dϕ2

�

�

�

�

ϕ¼v
¼ 1

2

�

λ̂0H þ λ̂00H
4

�

: ð6Þ

Since it is determined from the physical Higgs mass,

numerically λð2ÞCW ≃ λð2ÞSM (equal up to momentum dependent
corrections). To realize the CW mechanism without any
other field getting a vev, the observed Higgs boson mass
requires small negative quartic coupling, λ̂H ≃ −1=16 and
λ̂0H ≃ 1=4, at the minimum of the potential.
The model.—We introduce a complex scalar S in the

fundamental representation of extra SUðNSÞ gauge sym-
metry. The general form of the classically scale invariant
scalar potential is given by

V ¼ λHðH†HÞ2 þ λHSðH†HÞðS†SÞ þ λSðS†SÞ2; ð7Þ

and the RG equations for quartic couplings are as follows:

16π2
dλH
dt

¼ 24λ2H þ NSλ
2
HS − 6y4t þ 12y2t λH; ð8Þ

16π2
dλS
dt

¼ 4ð4þ NSÞλ2S þ 2λ2HS − 6

�

N2
S − 1

NS

�

g24λS

þ 3

4

�

N3
S þ N2

S − 4NS þ 2

N2
S

�

g44; ð9Þ

16π2
dλHS

dt
¼ λHS

�

4λHSþ12λH

þð4NSþ4ÞλS−3

�

N2
S−1

NS

�

g24þ6y2t

�

; ð10Þ

where yt is the top Yukawa coupling, g3 is the gauge
coupling of SUð3Þc, g4 is the gauge coupling of SUðNSÞ
with the RG equation

16π2
dg4
dt

¼ −g34

�

11

3
NS −

2

3
Nf −

1

6

�

; ð11Þ

where Nf is the number of Dirac fermions in the funda-
mental representation of SUðNSÞ. For yt and g3, the RG
equations are the same as in the SM. For simplicity, we do
not write the contributions from SM gauge couplings of
SUð2ÞL × Uð1ÞY which are negligible.
The extra singlet does not get a vev. Its sole purpose is to

generate large enough positive contribution to the βλH
through the mixed quartic coupling λHS. Thus the con-
ditions for the minimum (4) and the formula for the Higgs
mass (5) are unchanged, and the measured value of the
Higgs boson mass is obtained for NSλ

2
HS ≃ 40. The singlet

scalar gets the mass from the electroweak symmetry
breaking and it is fixed by NS,

mS ¼
ffiffiffiffiffiffiffi

λHS

p v
ffiffiffi

2
p ≃ 440

N1=4
S

GeV: ð12Þ

The anomalous dimension γ is that of the SM at one loop
and the threshold correction δλH is given by

δλH ¼ 1

2

NSλ
2
HS

16π2

�

ln

�

m2
S

μ2

�

−
3

2
þ 2Γ

�

þ ðSMpartÞ: ð13Þ

Because λHS is the largest coupling, we choose μ ¼ mS,
i.e., a2 ¼ λHS=2, to eliminate the logarithmic contribution.
Once we choose a, we can obtain λ̂0H in terms of couplings
xi and their beta functions βxi ¼ dxi=d ln μ,

λ̂0Hðx1;…; xn; μ ¼ aϕÞ ¼ 1

1 − βa
a

X

i

βxi
∂
∂xi λ̂H: ð14Þ
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Although our choice of μ removes the largest logarithmic
corrections appearing in higher orders, it is not unique and
we will also discuss the μ dependence of the results.
To illustrate the importance of the extra gauge inter-

actions, let us first discuss the case without the gauge
symmetry by setting g4 ¼ 0. For simplicity, we keep
SUðNSÞ global symmetry, namely couplings of all NS
complex scalars are assumed to be identical. The RG
evolution of quartic couplings for three different NS is
shown in Fig. 1. For one extra complex scalar, to obtain the
observed value of the Higgs boson mass, extremely large
mixed quartic coupling is required. This coupling blows up
rapidly just above the TeV scale. With increasing NS,
smaller λHS is needed for the observed Higgs boson mass,
and thus the model remains perturbative up to higher
energies. However, large βλH implies that λH runs fast,
and for NS ¼ 10, it is this coupling that blows up first, at
about 20 TeV. This feature is fully fixed by the requirement
λ̂0H ≃ 1=4 and does not depend on NS. Thus the perturba-
tivity cannot be extended beyond 20 TeV by increasing NS,
which is illustrated by the NS ¼ 102 case. These conclu-
sions do not depend on the assumption of equal couplings
of all scalars.
The perturbativity can be extended if λHS drops quickly

above the EW scale. This is achieved by sizable gauge
coupling g4 of the hidden SUðNSÞ, see Eq. (10). The rapid
decrease of λHS slows down the running of λH above the
EW scale. At the same time, there is a quasifixed point for
λs=g24 in the UV which, if the running of g4 is not
significant, is expected from Eq. (9) for NS ≥ 4. The
evolution of couplings in the model with NS ¼ 10 is
shown in Fig. 2. All the couplings remain perturbative
up to the Planck scale.
Slow running of g4 (which decreases λHS exponentially)

can be achieved by adjusting the number of SUðNSÞ
charged fermions with no couplings to S [in our example

we assume 54 spectator fermions in 10 and 1̄0 of SU(10)].
In order to avoid extra light states, either for cosmological
reasons or to avoid new decay modes of the Higgs boson,
we, for simplicity, assume that the extra fermions acquire
masses near the mS scale, see Eq. (12). This can be always
achieved without violating classical conformality and with-
out affecting the properties of the Higgs boson. Below the
scale of extra fermions the running of g4 is accelerated and
confinement occurs very fast.
An interesting insight can be gained by looking at the

evolution in Fig. 2 starting from the UV scale. The λHS is
tiny in the UV and so the two sectors evolve almost
separately: λS follows g4 and λH runs down due to itself.
This can be stretched over many orders of magnitude in the
energy scale. However, eventually, λHS becomes sizable
and provides a large positive contribution to βλH . Thus,
instead of turning back up due to top Yukawa coupling near
the EW scale, λH is driven to negative value which triggers
EW symmetry breaking.
Self-couplings of the Higgs boson.—If the EW symmetry

breaking is fully achieved by negative λ̂H, the effective
Higgs cubic and quartic couplings, defined in analogy with
the SM, are

λð3ÞCW ≡ 1

6v
d3Veff

dϕ3

�

�

�

�

ϕ¼v
¼ 5λð2ÞCW

3
þ λ̂00H

6
þ λ̂000H

24
; ð15Þ

λð4ÞCW ≡ 1

6

d4Veff

dϕ4

�

�

�

�

ϕ¼v
¼ 11λð2ÞCW

3
þ λ̂00H þ 5λ̂000H

12
þ λ̂0000H

24
; ð16Þ

where the condition for the minimum (4), Higgs mass (5),
and Eq. (6) are plugged in. If we neglect λ̂00H and higher
derivatives, these effective couplings are enhanced in the
leading order by 67% and 267%, respectively, compared
to the SM prediction (2), as already presented in Eq. (3).
Actually, the momentum dependent correction to the Higgs
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FIG. 1 (color). The RG evolution of quartic couplings λH;S;HS in
the model with NS ¼ 1 (red), 10 (green), and 102 (blue) complex
scalars for g4 ¼ 0. The effective potential is minimized at μ ¼
maxðmS;mHÞ which depends on NS. Boundary conditions at this
scale for λH and λHS are determined by the observed Higgs boson
mass, λ̂HðmSÞ≃ −1=16, and λS is set to 0 for simplicity.
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FIG. 2 (color). The RG evolution of quartic couplings and extra
gauge coupling in the model with NS ¼ 10. The effective
potential is minimized at μ ¼ mS. Boundary conditions at this
scale for λH and λHS are determined by the observed Higgs boson
mass, λ̂HðmSÞ≃ −1=16, and λS is set to 0 for simplicity.
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pole mass, not explicitly shown in (5), makes the effective
couplings slightly larger as the dashed lines indicate
in Fig. 3.
The λ̂00H depends on large g4 coupling, and thus the

corrections to the leading order predictions for the effective
cubic and quartic couplings are sizable (the effects of third
and fourth derivatives of λ̂H are, however, numerically
small). Keeping all the derivatives, the Higgs self-couplings
as functions of g24 are given in Fig. 3. We show results both
at one loop, based on the formulas presented in this Letter,
and two loop, based on the two loop renormalization group
equations and threshold corrections derived in Ref. [15].
For the two loop results we also show the dependence
on the choice of μ that indicates the size of higher loop
corrections. The example, in Fig. 2 which extends pertur-
bativity up to the Planck scale corresponds to p ¼ 0.35 in
Fig. 3. Relaxing this requirement allows for smaller values
of the g4. As g4 decreases, the predicted values of Higgs
self-couplings are getting larger and closer to the leading
order prediction given in Eq. (3).
Discussion and conclusions.—In the Coleman-Weinberg

Higgs scenario that we discussed, the EW symmetry

breaking is fully achieved by the Higgs quartic coupling
being driven to negative values at the EW scale. This is
achieved by a scalar field S, singlet under SM gauge
symmetry, but charged under extra gauge symmetry
SUðNSÞ which keeps the model perturbative to the
Planck scale. Since the Higgs doublet is the only field
getting a vev, the Higgs boson is fully SM-like in its
couplings to fermions and gauge bosons. However, the
effective cubic and quartic self-couplings of the Higgs
boson are significantly enhanced. Depending on the size
of hidden gauge coupling g4 which determines the scale up
to which the theory can remain perturbative, the cubic
coupling is enhanced by about 20% (perturbative to Planck
scale) to 80% (perturbative to 10 TeV) and quartic coupling
by 40% to 300%.
Interestingly, a number of extra scalar fields with

couplings to the Higgs field, similar to our scenario, have
been introduced to provide strong first order electroweak
phase transition which can make the electroweak baryo-
genesis viable [16–19].
Although extra scalars are stable, their relic density from

thermal freeze out is suppressed due to large extra gauge
coupling. They contribute negligibly to the dark matter of
the Universe, and expected signals are far below sensitiv-
ities of near future direct detection experiments.
Since the mass of extra scalars is 440=N1=4

S GeV, they
can be produced at the LHC and constrained by monojet
searches. However, extra scalars only couple to the Higgs
boson and thus their production cross section (through an
off-shell Higgs boson produced in gluon fusion or in
association with a vector boson) is suppressed. We leave
the study of LHC signatures for future work.
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