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Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum
information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as
special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-
integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the
relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast
to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of
certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance.
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In the past few years we havewitnessed a rapid growth in
applications of information-theoretic techniques to field
theory and condensed matter. Most of these applications
focus on studying the entanglement entropy, defined as the
von Neumann entropy of the reduced-density matrix on
spatial regions. The entanglement entropy in the ground
state and low-energy excited states has proven to contain a
great deal of information about the universal properties of
critical systems, their phase structure, and low-energy
dynamics; see [1] for a review.
In relativistic field theories the entanglement entropy

suffers from ultraviolet divergences due to the entangle-
ment of arbitrarily high energy modes. The divergent part
of the entanglement entropy is the same for all finite energy
states, and carries no information about the state. This
creates a need for other entropy concepts that are diver-
gence free. In this Letter we generalize the technique
introduced in [2,3] to compute in field theory a large class
of divergence-free entropic measures known as Renyi
relative entropies, which include as special cases most
entropies studied in information theory. Assuming analy-
ticity of Renyi relative entropy we then extract the relative
entropy of two density matrices defined as

Sðρ∥σÞ ¼ trðρ log ρÞ − trðρ log σÞ: ð1Þ

Relative entropy is a measure of the distinguishability of
two states in the asymptotic limit of a large number of
copies [4,5]. Special cases of relative entropy include the
entanglement entropy, the mutual information, and the
conditional entropy. The ultraviolet divergence in entan-
glement entropy can be attributed to the fact that the
maximally mixed density matrix is not a finite energy state
in relativistic field theories. All physically relevant con-
tributions to the entanglement entropy can be thought of as
special cases of relative entropy. [The finite piece of the
entanglement entropy of a state ρ appears in its relative
entropy with respect to the Gibbs state of the same energy:
SðρÞ ¼ Sther − Sðρ∥ρtherÞ, where trðρHÞ ¼ trðρtherHÞ.]
The relative entropy can be expressed as Sðρ∥σÞ ¼

ΔhHσi − ΔS, where ΔS is the difference in von Neumann
entropy of ρ and σ, and Hσ ¼ − log σ is the modular
Hamiltonian (entanglement Hamiltonian) of σ. The relative
entropy of states with respect to the Gibbs state, σA ¼
e−βHA=Z, is the standard free energy. In thisLetter,we evaluate
the relative entropy of arbitrary states with respect to restric-
tions of both vacuum and finite temperature states to spatial
subregions. By analogy, the relative entropies we compute
here can be thought of as generalizations of free energy.
The quantum Renyi relative entropies of two states, ρ

and σ, are defined to be [6,7]

Sαðρ∥σÞ ¼
� ½1=ðα − 1Þ� log trð½ραðσÞ�αÞ if ρ⊥σ∧ðσ ≫ ρ∨α < 1Þ
∞ else

ραðσÞ ¼ σ½ð1−αÞ=2α�ρ σ½ð1−αÞ=2α�; ð2Þ

for any α ∈ ð1=2; 1Þ∪ð1;∞Þ. [For the range α ∈ ð0; 1=2Þ it
is more natural to use Petz α entropies defined as ½1=ðα −
1Þ�trðρασ1−αÞ [8]. The definition in (2), sometimes referred
to as the “sandwiched” Renyi relative entropy, is a non-
commutative generalization of Petz α entropies.] The

notation σ ≫ ρ denotes that σ dominates ρ; i.e., the kernel
of σ is contained in the kernel of ρ. Though in this Letter we
use Renyi relative entropies as a calculation trick to find the
relative entropy and the fidelity of quantum states, they are
physically meaningful quantities on their own right. Renyi
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relative entropies appear naturally in the study of thermo-
dynamics of small systems and in strong converse theorems
for coding tasks, and they have an operational interpretation
in terms of hypothesis testing, Refs. [6,9,10], respectively.
Important special cases of Renyi relative entropies are

α ¼ 2 and α ¼ 1=2, which are related to the collision
relative entropy and fidelity, respectively. Quantum fidelity
is a natural generalization of the notion of pure states
overlap, jhψ jϕij, to mixed states, and has proven to be
extremely useful in characterizing quantum phase transi-
tions [11]. Note that, similar to Renyi entropies under
the assumption of analyticity, we can obtain the relative
entropy by taking the limit α → 1 of Renyi relative
entropies; i.e., limα→1�Sαðρ∥σÞ ¼ Sðρ∥σÞ. In this Letter,
we use this fact to construct a replica trick for relative
entropy in conformal field theories (CFTs).
Relative entropy replica trick.—Consider a (1þ 1)-

dimensional conformal field theory on a cylinder of
circumference L. The reduced density matrix of a region
A ¼ ðu; vÞ is σ ¼ trĀjΩihΩj, where jΩi is the vacuum state.
Our starting point is a path-integral representation for
fractional powers of σ. Denote by x the dimensionless
parameter ju − vj=L. Applying the conformal transforma-
tion z ¼ sin ½πðω − uÞ=L�= sin ½πðω − vÞ=L� to the cylin-
der, the density matrix element hϕþjσjϕ−i becomes
proportional to the path integral over the z planewithboundary
conditions ϕðy; 0�Þ ¼ ϕ�, y ∈ ð−∞; 0Þ. Inserting a resolu-
tion of the identity at argðzÞ ¼ πð1� 2γÞ splits σ according to

hϕþjσjϕ−i ¼
Z

DϕDϕ0hϕþjσγjϕihϕjσ1–2γjϕ0ihϕ0jσγjϕ−i:

Now consider the density matrix of an excited state
ρ ¼ trĀ½Oð−i∞ÞjΩihΩjO†ði∞Þj�. On the z plane the oper-
ators are inserted at e�iπx. For α < 1=x the density matrix ρ
on the z plane splits as

hϕþjρjϕ−i ¼
Z

DϕDϕ0hϕþjσ−½ð1−αÞ=2α�jϕihϕjραðσÞjϕ0i

× hϕ0jσ−½ð1−αÞ=2α�jϕ−i:

with the operator insertions contained in ραðσÞ. From this it
is clear that for integer values of α, tr½ρnðσÞn� is given by a
z-plane path integral with 2n operator insertions; see Fig. 1.
In order to compute Renyi relative entropies one has to

first properly normalize both ρ and σ. If ~ρ are ~σ are the un-
normalized states defined by the path integral, then

Snðρ∥σÞ ¼
1

n − 1
log

tr½~ρnð ~σÞn�ðtrσÞn−1
ðtr ~ρÞn

¼ 1

n − 1
logFρ

nðσÞ;

Fρ
nðσÞ ¼ hQn

k¼1OðzkÞO†ðz0kÞi
hOðz0ÞO†ðz00Þin

: ð3Þ

For σ, the vacuum-density matrix and the excited states
are primary states; we have zk ¼ eiπ½ð2kþ1Þ=nþx� and
z0k ¼ eiπ½ð2kþ1Þ=n−x�. The formula in (3) is similar to the
expression found for the entropy of excited states in [12].
However, it is important to notice that the locations of
operator insertions are not the same.
In the limit n → 1 we obtain the relative entropy of

the states ρ and σ. One might worry that, since (3) holds
only for n < 1=x, the limit n → 1 might fail to capture the
correct relative entropy. However, as we see explicitly
below, this limit reproduces the correct relative entropy for
all subsystems of size 0 < x < 1=2.
Zero temperature.—As the first example, consider free

c ¼ 1 massless bosons on a circle of circumference L, and
choose the state created by the insertion of a holomorphic
vertex operator at infinite past: V ¼ eiaϕ, where ϕ is the
boson field. This is a primary operator of dimension
ðh; h̄Þ ¼ ða2=2; 0Þ. We are interested in computing the
relative entropy of the reduced density matrix on a region of
size xL in this excited state with respect to the vacuum.
Applying a second conformal transformation ω ¼ −i ln z
maps the z plane to a cylinder of height 2π. Following (3)
we would like to compute

Fρ
nðσÞ ¼

hQn−1
k¼0 V½π 2kþ1

n þ x�V†½π 2kþ1
n − x�icyl

hVðπxÞV†ð−πxÞincyl
: ð4Þ

Correlation functions of vertex operators on a cylinder take
the form hQkVakðtkÞi ¼

Q
k>i½2 sinðtki=2Þ�−akai . Therefore,

one finds Fρ
nðσÞ ¼ ½n sinðπxÞ= sinðnπxÞ�na2 , and the nth

Renyi relative entropy is given by

SnðρVA∥σAÞ ¼
na2

n − 1
log

�
n sinðπxÞ
sinðnπxÞ

�
: ð5Þ

Analytically continuing in n, we obtain the relative entropy
and fidelity of these states:

SðρVA∥σAÞ ¼ a2½1 − πx cotðπxÞ�;
FðρVA; σAÞ≡ e−ð1=2ÞS1=2ðρVA∥σAÞ ¼ cosðπx=2Þa2=2: ð6Þ

FIG. 1. (a) The path integral for ρ can be written as a product of
three matrices: σ1=3ρ3ðσÞσ1=3. (b) Performing the path integral on
only the slice with operator insertionsO and boundary conditions
ϕ− and ϕþ imposed on each end corresponds to computing ρ3ðσÞ.
(c) The correlation function found by normalizing tr½ρ3ðσÞ3�.
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In the limit x → 1, the density matrices become orthogonal
pure states of the full system, and, hence, the relative entropy
diverges, while the fidelity vanishes as expected. A further
consistency check comes from the knowledge of the vacuum
modular Hamiltonian: HΩ ¼ ðL2=2Þ R x

−x dyf½cosðπyÞ−
cosðπxÞ�=sinðπxÞgT00 [13]. The change in the cylinder
energy density due to the excitation is ΔhT00i ¼ πa2=L2.
Hence, one finds ΔS ¼ ΔhHΩi − SðρVA∥σAÞ ¼ 0, which
matches the result obtained in [12] using the replica trick
for the entanglement entropy of excited states.
Next consider a primary excited state in a generic CFTon

a circle: Oð−i∞ÞjΩi. We denote the conformal dimension
of O by (h, h̄). The calculation of the relative entropy of
the reduced density matrix on a subsystem of size xL in this
excited state with respect to the vacuum reduces to finding a
2n-point correlator of O as a function of x. In the limit of
small subsystem one can compute Fρ

nðxÞ perturbatively in
x ≪ 1 using the operator product expansion: O ×O† ¼
1þΨþ � � �. Then, to the first nontrivial order in x,

Fρ
nðxÞ ¼ 1þ ðCΨ

OO†Þ2
�Qn−1

m¼1 sinðπm=nÞn−m
ð4πixÞnðn−1Þ=2

�−2ðΔΨþΔ̄ΨÞ

Notice that the Renyi relative entropies vanish up to the
order O½x2ðΔΨþΔ̄ΨÞ�. This can be understood as a conse-
quence of the first law of entanglement thermodynamics
for small subsystems [14]. Applying Pinsker’s inequality
we find that in the limit x ≪ 1, ρA approaches σA as
∥ρA − σA∥ ¼ O½xðΔΨþΔ̄ΨÞ�. In [12] the change in the entan-
glement entropy of A due to a primary excitation was
computed as a limit of a 2n-point correlator different from
the one in (7). Here, we prove that both replica tricks
produce the same answer. The expression in [12] for the
change in entropy using the entanglement entropy replica
trick can be written in terms of Fρ

n as defined in (7),

ΔS¼ ∂n½2nðhþ h̄Þ log½n sinðπx=nÞ=sinðπxÞ�
− logFρ

nðx=nÞ�jn→1

¼ 2ðhþ h̄Þ½1− πx cotðπxÞ�− SðρA∥σAÞ− x∂x logF1ðxÞ
¼ ΔhHΩi− SðρA∥σAÞ;

where we have used limn→1 logFnðxÞ ¼ 0, which is a
consequence of the finiteness of relative entropy.

Finite temperature.—Up to this point we have only
discussed zero-temperature states. Now we would like to
consider the relative entropy of reduced density matrices on
a region A ¼ ð0; lÞ in a CFT on a line at two different
temperatures: T and T0 ¼ T=m, m an integer. The reduced
density matrix of region A in a CFT on a line at finite
temperature T is σT ¼ trĀðe−H=T=ZÞ. The conformal trans-
formation z ¼ sinh½πðω − lÞT�= sinhðπωTÞ maps the
reduced density matrix at temperature T to the complex
plane. Under the conformal transformation the identified
boundaries at ωre � i=ð2TÞ are mapped to the interval
(e−πx, eπx) on the real line, where x ¼ lT. As we argued,
fractional powers of the density matrix, σγT , are proportional
to the path integral over the region 0 ≤ argðzÞ ≤ 2πγ.
The same transformation acting on the reduced density

matrix at temperature T0 maps it to an m-sheeted
Riemann surface with sheets connected along branch
cuts at (e−πx, eπx). The partition function on this m-
sheeted cover is proportional to the two-point correlation
function of twist operators inserted at the branch points:
hΦð1;2;…;mÞðe−πxÞΦðm;m−1;…;1ÞðeπxÞi; see Fig. 2. The twist
operator Φða1;a2;…;amÞ sews the sheets according to
a1 → a2 → � � � → am.
Following the prescription discussed in Sec. I we cut off

fractional powers of the density matrix at temperature T
from the path integral for ρT0

. Then, gluing ρnðσÞ together,
we find that tr½ρnðσÞn� is a Riemann surface with q ¼
nðm − 1Þ þ 1 sheets: a main sheet with n branch cuts at
eiπð2kþ1Þ=nðe−πx; eπxÞ for k ¼ 0;…; n − 1, and each cut is
glued to (m − 1) separate sheets; see Fig. 3.
In the language of twist operators the nth relative entropy

is given by

SnðρT=m∥σTÞ ¼
1

n − 1
log

hQn−1
k¼0Φð1ak

2
;…;akmÞðzkÞΦðakm;…;ak

2
1Þðz0kÞi

hΦð1a2;…;amÞðe−πxÞΦðam;…;a21ÞðeπxÞin
;

zk ¼ eπði½ð2kþ1Þ=n�−xÞ; z0k ¼ eπði½ð2kþ1Þ=n�þxÞ; ð7Þ

where aki is the ith sheet of the kth branch cut. All the
twist operators in (7) are primaries of weight Δm ¼
ðc=24Þðm − 1=mÞ. The numerator is a 2n-point correlation
function that is hard to compute in general. From the

Riemann-Hurwitz theorem it is clear that our [nðm − 1Þþ
1]-sheeted surface is in fact a Riemann sphere. The
computation of the correlation function of twist operators
in question involves finding the rational conformal map that

(a) (b) (c)

FIG. 2. (a) The path integral corresponding to the reduced
density matrix at temperature T: σT . (b) The density matrix of
ρT=3 after the conformal transformation that maps σT to the
complex plane. (c) The m-sheeted cover can be computed using
the correlation function of twist operators.

PRL 113, 051602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

1 AUGUST 2014

051602-3



uniformizes this sphere [15]. In the limit x ¼ lT ≫ 1
this correlator is dominated by the channel coming from
the contractions

Q
kΦð1ak

2
;…;akmÞ ∼ Φ½1;…;nðm−1Þþ1�, andQ

kΦðakm;…;ak
2
1Þ ∼ Φ½nðm−1Þþ1;…;1�. Our correlator of interest

computed in this channel is

hΦð1a1
2
;…;a1mÞΦða1m;…;a1

2
1Þ;…;Φð1an

2
;…;anmÞΦðanm;…;an

2
1Þi

≃ hΦ½1;…;nðm−1Þþ1�ð0ÞΦ½nðm−1Þþ1;…;1�ðeπxÞi
≃ cqe−4πxΔq ; ð8Þ
for some constant cq that depends on the coefficients of the
operator product expansion of twist operators. Similarly, at
large x the denominator is well approximated by

hΦð1a2;…;amÞð0ÞΦðam;…;a21ÞðeπxÞin ≃ cnme−4πxnΔm:

At infinite x the subsystem A has infinite volume. One
expects both ΔS and ΔhHσi to diverge linearly in x. While
there are no ultraviolet divergences in the Renyi relative
entropy, there can be an infrared divergent piece due to the
infinite volume as in the following case:

SnðmÞ≃ 4πx
n − 1

ðnΔm − ΔqÞ

¼ πcx
6ðn − 1Þ

�
ðn − 1Þ − n

m
þ 1

nðm − 1Þ þ 1

�
: ð9Þ

Analytically continuing in n, the relative entropy and
fidelity are found to be

SðρT=m∥σTÞ ¼
πclT
6

ð1=m − 1Þ2

FðρT=m; σTÞ ¼ exp
�
−
πclT
12

ð1=m − 1Þ2
1=mþ 1

�
: ð10Þ

This matches the result of the holographic calculation of
the relative entropy on a half line at finite temperature [13].
The m → ∞ limit corresponds to the vacuum density
matrix: ρ ¼ trĀjΩihΩj.
In out-of-equilibrium situations the relative entropy of

the reduced density matrix on a region A at time t with
respect to σT puts a lower bound on how far the local state is
from equilibrium. This is seen by applying the Pinsker
inequality that relates the relative entropy of two states to
their trace norm according to ∥ρ − σ∥2 ≤ 2Sðρ∥σÞ. At late

times, the relative entropy is small, and therefore the states
are close in trace distance.
Conclusions.—In this Letter we have taken a small step

towards crossing the language barrier between information
theory and field theory by computing a large class of entropic
measures in conformal field theories. We presented a
Euclidean path-integral approach to Renyi relative entropies,
and found that the relative entropyof reduceddensitymatrices
in excited states with respect to the vacuum or the thermal
state are given by certain correlation functions. Note that the
relative entropy replica trick exists in all dimensions.
However, the correlation functions of interacting theories
are hard to compute in higher than one spatial dimension.
The entanglement entropy replica trick for disjoint

subsystems is discussed in detail in [16,17]. The replica
trick for the relative entropy of disjoint subsystems pro-
vides an interesting Euclidean approach to a direct com-
putation of mutual information and conditional entropies in
terms of the partition function of higher-genus Riemann
surfaces [18]. The time dependence of relative entropy can
also be studied using the Euclidean method described here.
In systems with dissipation, the relative entropy of ρðtÞ
with respect to the equilibrium state provides dynamical
information on how the system approaches equilibrium.
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