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Quantum correlations are at the heart of many applications in quantum information science and, at the
same time, they form the basis for discussions about genuine quantum effects and their difference to classical
physics. On one hand, entanglement theory provides the tools to quantify correlations in information
processing and many results have been obtained to discriminate useful entanglement, which can be distilled
to a pure form, from bound entanglement, being of limited use in many applications. On the other hand, for
discriminating quantum phenomena from their classical counterparts, Schrödinger and Bell introduced the
notions of steering and local hidden variable models. We provide a method to generate systematically bound
entangled quantum states which can still be used for steering and, therefore, to rule out local hidden state
models. This sheds light on the relations between the various views on quantum correlations and disproves
a widespread conjecture known as the stronger Peres conjecture. For practical applications, it implies that
even the weakest form of entanglement can be certified in a semidevice independent way.
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Introduction.—Entanglement denotes quantum correla-
tions which cannot be generated in any local way. While the
characterization of entanglement for pure two-particle
states is straightforward, the task becomes challenging
for noisy or mixed quantum states. Here, even the simple
question whether or not a given quantum state is entangled
is not easy to decide. Apart from that, it is also difficult to
characterize the usefulness of entanglement for the mixed
state case. Since many quantum information protocols like
quantum teleportation or quantum key distribution work
with pure maximally entangled states, one may first distill a
noisy state to a pure highly entangled state, but character-
izing all possible distillation protocols is not straightfor-
ward. In fact, it was already shown in 1998 that there are
so-called bound entangled quantum states from which no
pure state entanglement can be distilled [1]. This shows
some irreversibility in entanglement theory, as these states
require pure state entanglement for their generation, but
then this entanglement can never be recovered again.
In the following years it turned out that bound entangled

states are central to many problems in quantum theory. For
instance, it has been shown that entangled states with a
positive partial transpose (PPT) are bound entangled, but
the question whether all bound entangled states are PPT is,
despite numerous efforts [2–4], undecided. Using bound
entangled states, it has been shown that bound information,
an analogue to bound entanglement in classical information
theory, exists in the multipartite scenario [5]. Furthermore,
bound entangled states are conjectured to have a small
dimensionality of entanglement [6]. Finally, it has

surprisingly been shown that the correlations of bound
entangled states can be used for distilling a secure quantum
key [7,8], although no pure state entanglement can be
distilled from the state. All these problems and observations
clearly justify calling bound entanglement a “mysterious
invention of nature” [9].
Besides all the applications in information processing,

quantum correlations are also important when contradic-
tions between quantum mechanics and the classical world
view should be derived. This was highlighted by Bell,
when he showed that no local hidden variable model can
reproduce the quantum mechanical correlations [10,11].
Interestingly, a similar question was discussed before by
Schrödinger, who asked whether one party (called Alice)
can steer the state from the other party (called Bob)
by appropriate measurements, a task which is not conceiv-
able in a classical world [12,13]. Mathematically, this
problem reduces to finding a local hidden state model
for the correlations, which is a hidden variable model with
the additional constraint that Bob’s measurements are
described by quantum mechanics.
Not surprisingly, bound entanglement is also central to

several open problems concerning Bell inequalities and
steering; see Fig. 1. Most prominently, a conjecture by
Peres [14] states that bound (and therefore especially PPT)
entangled states always admit a local hidden variable model
[15]. It is known that this conjecture is wrong in the
multipartite case under various different notions of bound
entanglement [16,17], or in the dimension bounded bipar-
tite case [18], but it is still open in the bipartite case. Here it
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is known to hold true for various cases [19–25], but it has
also been shown that with the help of additional states and
operations, any entangled state shows nonlocal behavior
[26,27]. Similarly, it has been conjectured that all bound
entangled states do admit even a hidden state model and are
thus useless for steering scenarios [28,29]. This conjecture
is termed the stronger Peres conjecture and recently strong
evidence in favor of it has been claimed [28,29]. In this
Letter we disprove it by giving an explicit counterexample.
More precisely, we present a method to generate sys-

tematically bound entangled states that violate a steering
inequality and thus do not admit a hidden state model. This
not only delivers the desired counterexample, it also
provides candidates for the other conjectures concerning
bound entanglement. For instance, these states are natural
candidates for testing the original Peres conjecture or the
existence of bipartite bound information [5]. Finally, the
resulting states are interesting from a practical point of view
as their entanglement may be verified in experiments
without any assumptions on the measurements on one party.
Framework and notation.—Steering can be viewed as

entanglement verification in a so-called semidevice indepen-
dent scenario [13]. One of the parties, say, Alice, is totally
untrusted and only the number of settings and respective
outcomes is specified, while for the other party, Bob, one has
a perfect quantum description of the measurements.
We consider the case that Alice can choose between

different measurements, each having the same number of
possible results. We use x ¼ 1;…; m to label the setting,
a ¼ 1;…; n for the result of the measurement, and ajx for
the combination. For Bob, we assume that he performs full
tomography on his d-dimensional system, so that he can

reconstruct the state for each possibility ajx of Alice. Thus,
the available data of this scenario are fully specified by the
ensemble of conditional states for Bob that we describe
by the collection of unnormalized density operators
E ¼ fρajxga;x, such that PðajxÞ ¼ trðρajxÞ. Note that non-
signaling means that

P
aρajx ¼ ρ is independent of the

setting x, and if this is fulfilled then the ensemble E indeed
has a quantum representation [12,30].
Note that in a general steering scenario Bob only

measures a few characterized observables, e.g., only the
Pauli matrices σx and σz, or, similarly to Alice, he chooses a
setting y and obtains a result b by doing a fixed measure-
ment described by the positive operator valued measure
fMbjygb. Then the available data are given by the joint
conditional probability distributions Pða; bjx; yÞ, which
admit a local hidden state model if they can be written as

Pða; bjx; yÞ ¼
X
λ

PðλÞPðajx; λÞtrðMbjyσλÞ: ð1Þ

Here, λ is a hidden variable, occurring with probabilityPðλÞ
and σλ are quantum states. In contrast to this, a local hidden
variable model would not have such a constraint for Bob’s
conditional distribution Pðbjy; λÞ. Note that any distribu-
tion, as, for instance, also Pðajx; λÞ, can still always be
written as an appropriate measurement on a quantum state
[31]—via this one sees that Eq. (1) can be obtained by
measuring a separable state. But the important point is that
Bob’s measurement is fixed.
However, since we assume that Bob obtains full tomog-

raphy, his exact measurement procedure does not matter. If
he obtains full information for instance via separate settings
and respective outcomes, then the set of all operators
fMbjygb;y spans the full operator space, so that the con-
ditions given by Eq. (1) can only be fulfilled if we have
already a corresponding equality on the state space level.
Thus, an ensemble E has a local hidden state model if
ρajx ¼

P
λPðλÞPðajx; λÞσλ holds for all choices ajx. If this

is not possible, the ensemble E is called steerable, referring
to the phenomena that Alice can steer the decomposition of
Bob’s reduced state in a nontrivial way.
Before we proceed, note that the problem can be

simplified if one collects all randomness of Alice’s meas-
urement into PðλÞ and Bob’s states σλ. This results in
considering only the finite number of deterministic strat-
egies for Alice that we label by λi1i2…im, such that the
subscripts ik encode the triggered outcome for each setting;
i.e., Pðajx; λi1…imÞ ¼ δix;a. Then, the ensemble E is non-
steerable if and only if there exists a set of positive
semidefinite operators ωi1i2…im ≥ 0 with ik ¼ 1;…; n for
each k ¼ 1;…; m, such that

ρajx ¼
X

i1;…;im

δix;aωi1i2…im ð2Þ

holds for all possible a; x [28].

FIG. 1 (color online). A schematic view on the space of all
quantum states. The set of all states is convex with the separable
states as a subset; states which are not separable are entangled.
The PPT states are bound entangled, as no pure state entangle-
ment can be distilled from these weakly entangled states. Some
states admit a local hidden state (LHS) model, and if this is not the
case, they can be used for steering. A larger set of states admits a
local hidden variable (LHV) model, and if this is not the case, the
state violates some Bell inequality. In this Letter we present a
method to generate PPT states which are steerable. In this figure
we have, according to the Peres conjecture, depicted the PPT
states as a subset of the LHV states, but the family of states
presented in this Letter may also be outside of the LHV states.
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All the steering inequalities.—Hence, to show that
an ensemble E is steerable one must certify that it is not
of the form given by Eq. (2). This certificate is called
steering inequality, and is similar in spirit to Bell inequal-
ities [10,15,32] or entanglement witnesses [33]. A linear
steering inequality is a linear function of the given
ensemble CðEÞ such that CðEÞ ≥ 0 holds for all non-
steerable ensembles E, so that CðEÞ < 0 witnesses
steering.
In order to derive the form of all such steering inequal-

ities one can proceed as follows: The question given Eq. (2)
is a special convex optimization problem called semi-
definite programming, i.e., minx∈RnfcTxjF0 þ

P
ixiFi ≥

0g with c ∈ Rn and Hermitian matrices F0 and all
Fi. Because of the convex structure of the problem
one can solve the alternative problem, called dual
maxZ≥0f−trðZF0ÞjtrðZFiÞ ¼ cig, which lower bounds
the original problem and usually attains the same optimal
value. This dual problem is effectively the optimization
over all steering inequalities. Thus, to derive all steering
inequalities we put Eq. (2) into the form of a semidefinite
program and invoke its dual. This approach has been used
in a quantification of steering [29].
For our intended goal we consider only a steering

inequality for the case m ¼ 2 and n ¼ 3, since this is
the setting of our counterexample. It should be noted,
however, that our approach can be applied also for more
than two measurements or more outcomes. In the follow-
ing, we state the form of all such inequalities and verify
CðEÞ ≥ 0 for all nonsteerable ensembles.
Steering inequality.—Consider the described steering

scenario for m ¼ 2 and n ¼ 3. Suppose we have a set of
operators Z ¼ fZ13; Z23; Z31; Z32; Z33g, each positive
semidefinite Z ≥ 0 for all Z ∈ Z, and further satisfying

Z11 ¼ Z13 þ Z31 − Z33 ≥ 0; ð3Þ
Z21 ¼ Z23 þ Z31 − Z33 ≥ 0; ð4Þ
Z12 ¼ Z13 þ Z32 − Z33 ≥ 0; ð5Þ
Z22 ¼ Z23 þ Z32 − Z33 ≥ 0: ð6Þ

Then, the linear function

CðEÞ ¼ trðZ13ρ1j1Þ þ trðZ23ρ2j1Þ þ trðZ31ρ1j2Þ þ trðZ32ρ2j2Þ
þ tr½Z33ðρ− ρ1j1 − ρ2j1 − ρ1j2 − ρ2j2Þ� ð7Þ

is non-negative for all nonsteerable ensembles of Eq. (2),
and thus CðEÞ < 0 shows steering.
To show this, note that a given ensemble E with m ¼ 2

and n ¼ 3 is nonsteerable if and only if there exists ωij ≥ 0
with i; j ¼ 1; 2; 3, such that

ρ1j1¼ω11þω12þω13; ρ1j2¼ω11þω21þω31; ð8Þ
ρ2j1¼ω21þω22þω23; ρ2j2¼ω12þω22þω32; ð9Þ

and

ρ ¼ ρ1j1 þ ρ2j1 þ ρ3j1 ¼ ρ1j2 þ ρ2j2 þ ρ3j2 ¼
X
ij

ωij ð10Þ

hold. Using these relations in Eq. (7) one can verify that this
expression equals to CðEÞ ¼ P

ijtrðZijωijÞ and, hence, is
non-negative since all occurring operators are positive
semidefinite.
Strategy for generating counterexamples.—Now we can

present our method of generating a counterexample. Let us
assume that we have fixed a linear steering inequality, i.e., a
set of valid operators Z satisfying the conditions from the
previous section. From this one can obtain an entanglement
witness [33] by employing any choice of measurements for
Alice in C. For the case of n ¼ 2, m ¼ 3 this means that

W ¼ A1j1 ⊗ Z13 þ A2j1 ⊗ Z23 þ A1j2 ⊗ Z31 þ A2j2 ⊗ Z32

þ ð1 − A1j1 − A2j1 − A1j2 − A2j2Þ ⊗ Z33 ð11Þ

is non-negative on separable states for any set of operators
Aajx satisfying Aajx ≥ 0 and

P
aAajx ¼ 1 for all combina-

tions a, x, and one readily gets C ¼ trðWρABÞ.
The method is then as follows: We assume that Alice and

Bob both have qutrits and that Alice makes a projective
measurement in two mutually unbiased bases. After that we
look for a “good” steering inequality, i.e., a good set Z. To
do so we randomly choose a pure state, compute its
ensemble E using the fixed measurements of Alice, and
determine the best steering inequality Z. Afterwards, we
build up the given witness W and minimize its expectation
value with respect to all PPT states. If this optimum is
negative, then we have already a counterexample. If this
fails then we start over. However, once we found a PPT
state violating the randomly chosen steering inequality, we
can use this state, compute its ensemble, and look for an
even better inequality. And, similarly, once we have a better
steering inequality we can look for an even better state. This
further amplifies the violation of the PPT entangled state
and we repeat this until the violation saturates.
Note that the occurring optimizations are semidefinite

programs and thus can be done efficiently [34,35].
Furthermore, we should add that we normalize the steering
inequality such that each Z ∈ Z satisfies trðZÞ ¼ 1.
Counterexample.—Running the explained procedure

quickly results in bound entangled states which serve
as counterexamples to the stronger Peres conjecture.
Interestingly, if one amplifies the violation, we always
end up with a violation of C ¼ −0.0029. From the
numerical solution one can infer the following analytical
solution.
At first, let us describe the steering inequality: The set of

operators Z13 ¼ jqþihqþj, Z23 ¼ jq−ihq−j, Z32 ¼ Z33 ¼
jsihsj, and Z31 ¼ ð1 − xÞjtihtj þ xj2ih2j with real, normal-
ized vectors
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jq�i ¼ ½a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2 − b2

p
;∓b�; ð12Þ

jsi ¼ ½a;−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

p
;0�; jti ¼ ½c;−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− c2

p
;0�; ð13Þ

and abbreviations

a¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ2x
3

r
; b¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1−2x
4

r
; c¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2−4x
3−3x

r
ð14Þ

define a one-parameter family of steering inequalities
for 0 ≤ x ≤ 1=2.
This can be seen as follows: With this ansatz we already

fulfil the positivity requirements of each individual Z ∈ Z.
Moreover, the additional constraints given by Eqs. (5) and
(6) are satisfied automatically since Z32 ¼ Z33, while from
Eqs. (3) and (4) we only need to check one condition, since
the unitary matrix V ¼ diagð1; 1;−1Þ interchanges Z13

with Z23, (i.e., Z23 ¼ VZ13V†), but leaves Z31 and Z33

invariant. Thus, we only need to show that Z11 ≥ 0, for
which the particular choices of a, b, c become important.
These are determined by the identity Z13 þ Z23 þ Z31 ¼
diagð2; 1=2; 1=2Þ that we observed from the numerical
solution. Via this choice, the operator Z11 then has the same
eigenvalues as Z31, i.e., eigenvalues fx; 1 − x; 0g.
Second, before discussing the state, let us fix the two

mutually unbiased bases, since we employ some rotated
form, which makes the final bound entangled state look
simpler. The respective vectors are denoted by jvxjai and

are given by jv1=2j1i ¼ ½1= ffiffiffi
3

p
;−1=

ffiffiffi
6

p
;∓1=

ffiffiffi
2

p �, jv3j1i ¼
½1= ffiffiffi

3
p

;
ffiffiffiffiffiffiffiffi
2=3

p
; 0�, for a ¼ 1 and jv1j2i ¼ ½1; 0; 0�, jv2j2i ¼

½0; q= ffiffiffi
2

p
; iq=

ffiffiffi
2

p �, jv3j2i ¼ ½0; q�= ffiffiffi
2

p
;−iq�=

ffiffiffi
2

p �, with
q ¼ ð−1Þ2=3 for setting a ¼ 2.
Finally, let us turn to the state. Consider the following

class of states:

ρAB ¼ λ1jψ1ihψ1j þ λ2jψ2ihψ2j
þ λ3ðjψ3ihψ3j þ j ~ψ3ih ~ψ3jÞ; ð15Þ

using the normalized states

jψ1i ¼ ðj12i þ j21iÞ=
ffiffiffi
2

p
; ð16Þ

jψ2i ¼ ðj00i þ j11i − j22iÞ=
ffiffiffi
3

p
; ð17Þ

jψ3i ¼ m1j01i þm2j10i þm3ðj11i þ j22iÞ; ð18Þ
j ~ψ3i ¼ m1j02i −m2j20i þm3ðj21i − j12iÞ; ð19Þ

with mi ≥ 0.
By construction, this represents a valid quantum state. In

order to assure that this state has a positive partial trans-
pose, we make it PPT invariant, i.e., ρAB ¼ ρTA

AB, for which
one must make the off-diagonal blocks Hermitian. These
constraints will fix the eigenvalues to

λ1 ¼ 1 − 2þ 3m1m2

4 − 2m2
1 þm1m2 − 2m2

2

; ð20Þ

λ3 ¼
1

4 − 2m2
1 þm1m2 − 2m2

2

: ð21Þ

The parameter λ2 ¼ 1 − λ1 − 2λ3 is given by normalization.
The λi are therefore parametrized bym1,m2 and this is only
giving non-negative eigenvalues if m2

1 þm2
2 þm1m2 ≤ 1.

Summarizing, we have deduced a class of steering
inequalities Z parametrized by 0 ≤ x ≤ 1=2, a set of
measurements for Alice given by the two mutually
unbiased bases, and a class of PPT states that depend on
two non-negative, constrained parameters m1, m2. For
these choices one can now compute expectation values
of the steering inequality, and deduce combinations which
verify steering; see Fig. 2. A heuristic optimization over the
steering violation gives C ¼ −0.0029 for the parameters
x ¼ 0.1578, m1 ¼ 0.2162, m2 ¼ 0.4363, which coincides
with the numerically found solution.
Conclusion.—We provided a way to generate bound

entangled states that do not possess a local hidden state
model and thus violate a steering inequality. This disproves
the stronger Peres conjecture and shows that the original
Peres conjecture cannot be proven by considering the
stronger steering case. It also means that even the weakest
form of entanglement can be verified in a semidevice
independent way.
Naturally, the generated bound entangled quantum states

are interesting candidates for some of the conjectures

FIG. 2 (color online). The family of states which are counter-
examples to the stronger Peres conjecture. The parametersm1 and
m2 characterize the state, while x characterizes the steering
inequality. The red dot corresponds to the values x ¼ 0.1578,
m1 ¼ 0.2162, m2 ¼ 0.4363 which leads to the highest violation
of the steering inequality.
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concerning bound entanglement. A first question is whether
with a few further modifications of our states and mea-
surements one could even find a violation of a Bell
inequality and thus disprove also the original Peres con-
jecture. A second question is whether this bound entangled
state could even allow the generation of a secret key in a
semidevice independent quantum key distribution protocol.
Third, these bound entangled states even provide prominent
candidates to investigate whether they could be useful for
teleportation or in entanglement swapping in quantum
repeaters [36]. Finally, it would be interesting to use our
method to generate bound entangled states in higher
dimensions, such as a 4 ⊗ 4 system, which can be viewed
as a four-qubit system. Given the recent advances in
quantum control, such states could probably be observed
with entangled photons or ions.

We would like to thank J.-D. Bancal, N. Brunner, M.
Navascués, and Y. C. Liang for stimulating discussions
about the Peres conjecture. This work has been supported
by the EU (Marie Curie CIG 293993/ENFOQI and Marie
Curie IEF 302021/QUACOCOS), the BMBF (Chist-Era
Project QUASAR), the FQXi Fund (Silicon Valley
Community Foundation), the DFG, the Austrian Science
Fund (FWF), and the Marie Curie Actions (Erwin
Schrödinger Stipendium J3312-N27).

Note added.—After the appearance of our results on the
arXiv it was noted that if one takes the state from our family
with m1 ¼ 1=60 and m2 ¼ 3=10, the MUB measurements
of Alice and the three dichotomic measurements of Bob
characterized by the steering inequality, more precisely the
Z13, Z23, Z33 with x ¼ 0.26, then the corresponding data do
not admit a local hidden variable model [37]. This shows
that our method can indeed be used to find counter-
examples to the original Peres conjecture. Note, however,
that this approach is not working for the optimal steering
parameters.
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