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We present measurements of a topological property, the Chern number (C1), of a closed manifold in
the space of two-level system Hamiltonians, where the two-level system is formed from a super-
conducting qubit. We manipulate the parameters of the Hamiltonian of the superconducting qubit along
paths in the manifold and extract C1 from the nonadiabatic response of the qubit. By adjusting the
manifold such that a degeneracy in the Hamiltonian passes from inside to outside the manifold, we
observe a topological transition C1 ¼ 1 → 0. Our measurement of C1 is quantized to within 2% on either
side of the transition.
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The topology of quantum systems has become a topic of
great interest due to the discovery of topological insulators
in two [1–4] and three [5–7] dimensions. It has been shown
that certain robust topological invariants, such as the Chern
number, help to classify physical phenomena [8–10]. As
these topological integers remain unchanged by small
perturbations to the system, jumps in their value represent
nontrivial topological transitions in the quantum system,
such as an increment in the filling factor of the integer
quantum Hall state [8]. To understand the meaning of the
Chern number, consider initializing a system in the ground
state of a Hamiltonian described by two parameters, for
example, the angles θ and ϕ of a magnetic field applied to a
spin system. Adiabatically adjusting these parameters
around a closed path that bounds a surface S, one might
expect to arrive back at the original ground state, up to a
dynamical phase. However, Berry and Pancharatnam
[11,12] showed that there is an additional phase contribu-
tion known as the geometric or Berry’s phase (φBerry). This
phase is given by the surface integral

φBerry ¼
Z
S
F · dS; ð1Þ

where S is a vector normal to the surface and F is a vector
known as the Berry curvature that characterizes how the
ground state is modified by changing parameters [13].
If S is a closed manifold, then its (nonexistent) boundary

clearly givesφBerry ¼ 0. However, phase is onlywell defined
up tomultiples of 2π, and, although the Berry phase depends
on the U(1) gauge choice jψ0i → eiφðθ;ϕÞjψ0i, where
jψ0ðθ;ϕÞi is the ground state, the Berry curvature is gauge
invariant. Therefore, the integral

C1 ¼
1

2π

I
S
F · dS ð2Þ

is a well-defined topological invariant known as the (first)
Chern number [14], which is quantized to integer values.
This Chern number may be intuitively understood as count-
ing the number of times an eigenstate wraps around a
manifold in Hilbert space and is precisely the topological
invariant that yields, for example, quantization of the
resistance in the integer quantum Hall effect [8–10].
The Berry phase has been investigated in a wide variety

of systems [15–18], both as a fundamental property of
quantum systems and as a practical method to manipulate
quantum information [19,20]. In a breakthrough experi-
ment, Leek et al. first measured the Berry phase of a
superconducting qubit [21–23]. These experiments typi-
cally extract φBerry interferometrically after a cycle of
closed loop evolution, using a spin echo pulse to remove
the dynamical phase. Such interference experiments do not
easily generalize to more complicated Hamiltonians, such
as interacting many-body systems. For instance, Ref. [21]
uses the fact that the Berry phase is identical for the ground
and excited states, which will not hold for more than a
single spin.
In this Letter, we demonstrate a method of probing

topology which is applicable to systems of any size or
complexity. As a test of this method, we extract the Chern
number of closed manifolds in the parameter space of two-
level system (qubit) Hamiltonians. A single qubit has a
simple topological structure that may readily be described
analytically. However, the experimental method we use to
reveal this structure can be applied to more complex
systems, such as large spin chains with arbitrary couplings,
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where simulation on classical hardware is inefficient [24].
Following the proposal in Ref. [25], we measure the
response of the qubit to nonadiabatic manipulations of
its Hamiltonian Hðθ;ϕÞ, which leads to an apparent force
fϕ ≡ −∂ϕH, given by [25–27]

hfϕi ¼ hψ0jfϕjψ0i − vθFθϕ þOðv2Þ; ð3Þ

where vθ is the rate of change for the parameter θ and Fθϕ is
a component of the Berry curvature tensor [28]. If the
system parameters are adjusted (ramped) slowly enough
such that the Oðv2Þ terms are negligible, then the Berry
curvature may be extracted from this linear response. By
integrating the Berry curvature over a closed parameter
manifold, we extract C1. When the manifold encloses a
single degeneracy in the Hamiltonian, we find C1 ≈ 1, and
when it encloses no degenerate points, we find C1 ≈ 0;
thus, we observe a topological transition in a spin-1=2
system. The transition from C1 ¼ 1 to C1 ¼ 0 is accurately
quantized to within 2%. The simplicity and generality of
this method make it an attractive means of probing the
topology of engineered quantum systems.
In our experiment, we use a transmon qubit primarily

made of titanium nitride, as described in Ref. [29]. The qubit
is operated in the strong dispersive circuit QED regime [30]
and cooled in an aluminum 3D microwave cavity using a
dilution refrigerator with a base temperature below 25 mK.
An amplification chain consisting of a high electron mobility
transistor (HEMT) and a Josephson parametric amplifier
(JPA) in phase sensitive mode was used to perform a high-
fidelity single-shot readout of the qubit [31–34] from the
qubit state-dependent phase shift of a probe tone [35].
Starting from a mixed state with ∼5% excited state pop-
ulation, the qubit was initialized in its ground state with
∼98.8% fidelity by strongly measuring the state of the qubit
and postselecting data from initially measured ground states.
Figure 1(a) depicts a simplified system schematic; see the
Supplemental Material for more details [36].
The transmon is effectively a nonlinear resonator [30],

with a transition frequency of ωq ¼ 4.395 GHz. An anhar-
monicity of 280 MHz makes the qubit an effective two-level
system in the parameter regimes explored here. In the
rotating frame of an applied microwave drive of frequency
ωd, the Hamiltonian for the qubit may be written as [30,40]

H=ℏ ¼ 1

2
½Δσz þ Ωσx cosϕþ Ωσy sinϕ�; ð4Þ

where Δ ¼ ωd − ωq, ϕ is the phase of the drive tone, Ω
expresses the amplitude of the drive tone as the Rabi
oscillation frequency it would induce if it were applied at
the qubit resonance, and σx, σy, and σz are the Pauli spin
matrices. By varying these parameters, we can create
arbitrary single-qubit Hamiltonians. In particular, we work
with collections of Hamiltonians that can be represented in
parameter space as an ellipsoidal manifold given by

Δ ¼ Δ1 cos θ þ Δ2; Ω ¼ Ω1 sin θ; ð5Þ

with cylindrical symmetry about the z axis. Throughout this
Letter, we work with ellipsoids of size Δ1=ð2πÞ ¼ 30 MHz
and Ω1=ð2πÞ ¼ 10 MHz, and vary Δ2 between −10 and
60 MHz. These particular parameter manifolds are not a
important choice, as the topological properties we extract are
expected to be independent of deformations of the manifold
that do not cross the degeneracy at Δ ¼ Ω ¼ 0.
Figure 1(b) depicts a typical sequence used to measure

the Berry curvature. We first initialize the qubit in its
ground state at θðt ¼ 0Þ ¼ 0 [41], fix ϕðtÞ ¼ 0, and
linearly increase (ramp) the angle θðtÞ ¼ πt=tramp in
time, stopping the ramp at various times tmeas ≤ tramp to

FIG. 1 (color online). Measuring Berry curvature and Chern
number in a transmon qubit. (a) Diagram of the experimental
setup. The qubit is manipulated and probed by two separate
microwave generators, while a JPA provides high-fidelity meas-
urement. For a more complete diagram, see the Supplemental
Material [36]. (b) Experimental pulse sequence. Following an
initial measurement to project into the ground state, the detuning
and Rabi drive are ramped along an elliptical protocol, after
which quantum state tomography is performed. (c) Tomography
of such a ramp, with parameters tramp ¼ 1 μs, Δ1=ð2πÞ ¼
30 MHz, and Ω1=ð2πÞ ¼ 10 MHz. Data are shown as solid
circles, while the solid lines are a theoretical expectation with
T1 ¼ 22 μs and T�

2 ¼ 9 μs, with Δ2=ð2πÞ ¼ 300 kHz added to
account for uncertainty in the qubit frequency. (d) Using Eq. (7),
one can extract the Berry curvature Fθϕ, the integral of which
gives the Chern number [C1; see Eq. (8)].
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perform qubit tomography. At each tmeas, we measure the
generalized force

hfϕi ¼ −h∂ϕHijϕ¼0 ¼ −
Ω1 sin θ

2
hσyi; ð6Þ

which is 0 in the adiabatic limit. Therefore, the Berry
curvature is given as the leading order correction to
adiabatic manipulation by

Fθϕ ¼ h∂ϕHi
vθ

¼ Ω1 sin θ
2vθ

hσyi: ð7Þ

By integrating this expression, we obtain the Chern number
C1 ¼ ð2πÞ−1 R π

0 dθ
R
2π
0 dϕFθϕ. As the Hamiltonian with

parameters in Eq. (5) is cylindrically symmetric about the
z axis, the Berry curvature is a function of θ alone. Thus,
the Chern number reduces to

C1 ¼
Z

π

0

Fθϕdθ: ð8Þ

Figure 1(c) shows the results of state tomography for a
protocol with tramp ¼ 1 μs and Δ2 ¼ 0. The data agree well
with a simulation using a Lindblad master equation model
[42], with dissipation set to the experimentally measured
rates T1 ¼ 22 μs and T�

2 ¼ 9 μs [43]. We extract the Berry
curvature Fθϕ [Fig. 1(d)] from the measured values of hσyi

and integrate it to get a measured Chern number of
C1 ¼ 0.974� 0.023, within a few percent of the quantized
value C1 ¼ 1 expected from theory. Correcting for the
finite-fidelity preparation of the ground state [44], we find
C1 ¼ 0.998� 0.023 [24].
To drive a topological transition in the qubit, we now

modify the detuning offset Δ2. At Δ2 ¼ 0, the Chern
number of a single qubit is C1 ¼ 1, which counts the
number of times that the Bloch vectors wrap around the
sphere as θ and ϕ are varied. One can see this by examining
the limits θ ¼ 0 and θ ¼ π, which correspond to ground
states hψ0jσzjψ0i ¼ 1 and −1, respectively. Since the wave
function is opposite at the poles, it must wrap the sphere in
between [see Fig. 2(a)].
As we change Δ2, the ground state evolution is quanti-

tatively modified, but for jΔ2j < jΔ1j, the Chern number
remains unchanged. However, for jΔ2j > jΔ1j, the ground
state matches at the two poles [see Fig. 2(b)]. This gives a
Chern number of 0, meaning that the system undergoes a
topological transition at jΔ2j ¼ jΔ1j. Such a transition may
only occur when the Berry curvature becomes ill defined at
the point Δ ¼ Ω ¼ 0. The topological transition corre-
sponds to moving this degeneracy from inside to outside
the elliptical manifold.
The measured Chern number is plotted in Fig. 2(d),

showing a relatively sharp transition at the expected value
Δ2 ¼ Δ1. Experimentally, the transition is broadened due

FIG. 2 (color online). Measuring the topological transition. (a) A schematic of a parameter sweep for Δ2 ¼ 0. The orange ellipse
represents the parameter surface used to measure C1, with the particular sweep shown in red. The results of a simulation of the ramp
without relaxation are plotted on the Bloch sphere on the right. The state wraps the Bloch sphere, with a deviation in the σy that
represents the measured signal. (b) The same as for (a), with Δ2 ¼ 1.5Δ1. Here, there is no wrapping of the Bloch sphere. (c) The Berry
curvature measured as a function of Δ2=Δ1, which is integrated in (d) to yield C1.
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to the nonzero ramp rate, which can be understood as
the influence of the Oðv2Þ terms in Eq. (3) (see the
Supplemental Material [36]). The average values of
Chern number for Δ2 < Δ1 [Δ2 > Δ1] are C1 ¼
0.980ð8Þ [−0.011ð6Þ], in good agreement with theory even
without correction for infidelity in the state preparation.
The topological transition should become sharper in the
limit tramp → ∞ for a perfectly coherent qubit. However,
the finite T1 and T�

2 values for a real qubit broaden this
transition and destroy perfect quantization [45,46] even in
the limit of fully adiabatic evolution. Additionally, due to
the linear dependence of the generalized force on the
velocity in Eq. (3), the number of measurements required
for constant signal to noise scales as 1=tramp

2. Given the
properties of the qubit used here, we found tramp ¼ 1 μs to
be a good compromise between these competing behaviors.
We explore the effect of finite ramp time by measuring C1

and the Berry curvature as a function of tramp. Figures 3(a)
and 3(b) show a numerical simulation and experimental
results for the measured Berry curvature as a function of
tramp. The data qualitatively match the theory, with the
measured Berry curvature largely independent of tramp for
times longer than ∼1 μs. For shorter tramp, we observe
oscillations due to the increasingly nonadiabatic passage

throughout the ramp. While these oscillations affect the
measured Berry curvature on a point by point basis, they can
be expected to partially average away when computing C1.
Figure 3(c) shows the values of C1 computed from the data
in Figs. 3(a) and 3(b). Here, we see that the simulations
predict that C1 ≈ 1 for tramp ≳ 400 ns. In contrast, the
experimental results depart from the quantized value at
∼750 ns; we expect that this discrepancy is due to increasing
error in the drive modulation occurring at shorter ramp times.
Finally, Fig. 3(d) shows the topological transition

measured over a finer range of Δ2, for tramp ¼ 0.5, 1, and
2 μs. Fundamentally, the finite coherence of the qubit is
expected to limit this transition to a minimum width of
approximately

δ

�
Δ2

Δ1

�
≈

2π

Δ1T�
2

¼ 0.02; ð9Þ

due to broadening of the qubit resonance. This is less than
the width observed for all values of tramp; thus, we observe a
sharpening of the transition at longer ramp times, consistent
with expectations.
In addition to their relevance to quantum information

processing, the measurements described in this Letter
may be considered as a simulation of a condensed matter
system using engineered and tunable quantum resources.
Namely, by mapping states on the Bloch sphere to wave
vectors in the first Brillouin zone, one can make an analogy
to noninteracting many-body condensed matter systems
[47]. To illustrate this concept, we briefly describe in the
Supplemental Material how to map the topology of a single
qubit onto the Haldane model of graphene [36], a para-
digmatic system exhibiting a topological phase transition
[1]. The high level of control in superconducting qubits
makes them potentially flexible platforms for simulating
the topology of condensed matter systems.
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