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We show that the quantum bound for temporal correlations in a Leggett-Garg test, analogous to the
Tsirelson bound for spatial correlations in a Bell test, strongly depends on the number of levels N that can
be accessed by the measurement apparatus via projective measurements. We provide exact bounds for
small N that exceed the known bound for the Leggett-Garg inequality, and we show that in the limit
N → ∞ the Leggett-Garg inequality can be violated up to its algebraic maximum.
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Introduction.—Bell inequalities place fundamental
bounds on the nature of correlations between spatially
separated entities within a local hidden variable framework
[1]. Leggett and Garg showed that temporal correlations
obey similar inequalities based on assumptions of macro-
scopic realism and noninvasive measurability [2]. Quantum
particles are bound neither by local hidden variables nor
macroscopic realism and so can violate both Bell and
Leggett-Garg inequalities (LGIs).
The maximum degree to which a quantum system can

violate a Bell inequality is known as the Tsirelson bound
[3], significantly less than the largest-conceivable value, the
algebraic bound [4]. Violations of a Bell inequality beyond
the Tsirelson bound would be evidence of new physics
beyond quantum theory [6].
With interest in the LGIs growing (see Ref. [7] for a

review), we ask here whether there is such a thing as a
temporal Tsirelson bound for the LGIs. In the light of some
recent results [8,9] and given the formal symmetry between
the two types of inequality [10,11] and the general trend
towards unification between temporal and spatial correla-
tions [12–15], onewould expect that the Tsirelson bound for
the LGIs holds analogously to the spatial case. Surprisingly,
and as we show here, this is not the case. By considering
a broader class of projective measurements than hitherto
considered, we show that the maximum quantum violation
of the LGIs can exceed the Tsirelson value and that it
increases with increasing system size, even up to the
algebraic bound in the asymptotic limit.
Let us now be more concrete and consider the simplest

LGI which, for dichotomous observable Q ¼ �1, reads

K3 ≡ C21 þ C32 − C31 ≤ 1; ð1Þ

where Cβα ¼ hQðtβÞQðtαÞi is the correlation function of
variable Q at the two times tβ ≥ tα. For a two-level system,
the maximum quantum value of K3 is Kmax

3 ¼ 3
2
[2], which

we shall refer to as the Lüders bound, KLüders
3 ¼ 3

2
, for

reasons that will become clear shortly. It has been proven

rigorously that for measurements given by just two pro-
jectors, Πþ and Π−, onto eigenspaces associated with
results Q ¼ þ1 and Q ¼ −1, the maximum quantum value
ofK3 is the same as for the qubit, irrespective of system size
[9]. This has been reflected in several studies: The experi-
ment of Ref. [16] on a three-level system obtained a
maximum value of less than 3=2; on the theory side,
multilevel quantum systems such as a large spin [17],
optoelectromechanical systems [18], and photosynthetic
complexes [19] have also been observed to obey
K3 ≤ KLüders

3 . From this, one might conclude that nothing
new is to be gained from considering higher-dimensional
systems. Were this the case, the bound for the qubit would
apply in all generality and KLüders

3 could be identified
with the relevant temporal Tsirelson bound. However, as
we will show, with a more general projective measurement
scheme, violations of Eq. (1) for multilevel systems can
exceed the qubit value.
Other than in an invasive scenario (where the algebraic

maximum is trivially achieved, e.g., a classical device with
memory or its quantum realization via positive-operator
valued measures (POVMs) [8]), the only hint that a
violation of Eq. (1) greater than KLüders

3 is possible has
come in the recent work by Dakić et al. [20]. There,
however, the excess violation was claimed to stem from
correlations beyond quantum theory. In contrast, our excess
violations are found within the standard framework of
quantum theory and projective measurements. This
we achieve by considering measurements on an N-level
system that can project the state in one of M different
subspaces, 2 ≤ M ≤ N, with outcomes that are never-
theless associated with either Q ¼ þ1 or Q ¼ −1. From
a macroscopic-realist point of view, this leaves Eq. (1)
unchanged. From a quantum perspective, however, the
choice of M determines the state-update rule under pro-
jective measurement: For M ¼ 2 the projection is onto one
of two subspaces, corresponding to Lüders rule for dicho-
tomic measurements [21], whereas M ¼ N is the case of a
complete degeneracy-breaking measurement, as initially
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proposed by von Neumann [22] (see also Ref. [23] for a
discussion). These additional possibilities for state reduc-
tion are ultimately responsible for the increased violations.
In this Letter we use the example of a large spin

precessing in a magnetic field to demonstrate that viola-
tions K3 > ð3=2Þ are possible and that the algebraic bound
K3 ¼ 3 can be reached. We then discuss the exact upper
bounds for small M ≤ 5, and how they may be obtained
with few-dimensional systems with N ≤ 9.
We discuss how a similar modification to the spatial

Bell scenario does not lead to an increase in the Tsirelson
bound for the corresponding Bell inequality [3]. Our
results therefore reveal a stark contrast between spatial
and temporal correlations. Furthermore, these results imply
the utility of the LGIs with our extended measurement
scheme as dimension witnesses [24], i.e., a certification of
the minimum number of quantum levels an experimenter is
able to manipulate, or in the discrimination of Lüders and
von Neumann state-update rules [25].
Preliminary notions.—We consider measurements of a

macroscopic property Q, which can take values �1, on an
N-level quantum system, with each level associated with a
definite value of Q. From a macrorealist point of view, the
fact that different levels are associated with the same value
of Q is irrelevant: They may be considered as microscopi-
cally distinct states that have the same macroscopic
property Q. Macrorealism and noninvasive measurability
imply that at each instant of time, the system has a definite
value of Q, which is independent of measurements pre-
viously performed on the system, and, therefore, that the
bound for Eq. (1) in macrorealist theories remains the same.
From a quantum mechanical perspective, the fact that the

system has more than two levels allows for many possible
state-update rules. According to Lüders’ rule [21], the state
is updated as ρ↦Π�ρΠ�, up to normalization, depending
on the outcome of the measurement. On the opposite side,
von Neumann’s original proposal [22] is a state-update

ρ↦
P

kΠ
ðkÞ
� ρΠðkÞ

� , where ΠðkÞ
� are one-dimensional projec-

tors. Both state-update rules are plausible, and the choice of
the correct one depends on the particulars of the interaction
between the system and the measurement apparatus (see
Ref. [23] for a discussion).
More generally, we consider all possible intermediate

cases, namely, state-update rules given by M different
projectors, with 2 ≤ M ≤ N, associated with either a þ1 or
−1 outcome. The correlation functions are therefore
given by

Cβα ¼
X
l;m

qlqmTrfΠmUβαΠlUα0ρ0U
†
α0ΠlU

†
βαg; ð2Þ

where ql represents the outcome �1 associated with Πl, ρ0
is the initial state of the system, and Uβα ¼ Uðtβ − tαÞ ¼
e−iHðtβ−tαÞ is the unitary time-evolution operator for some
Hamiltonian H.

A simple example.—Consider a quantum-mechanical
spin of length j in a magnetic field oriented in the x
direction. We write its Hamiltonian (ℏ ¼ 1) as

H ¼ ΩJx; ð3Þ

with Ω the level spacing and Jx the x component of the
angular momentum operator. Let us choose to measure the
spin in the z direction such that the measurement projectors
are Πj

m ¼ jm; jihm; jj, with jm; ji eigenstates of the Jz
operator. In this example, we only consider the von
Neumann limit, M ¼ N ¼ 2jþ 1, and choose the meas-
urement values to be qjm ¼ 1 − 2δm;−j, such that the lowest
energy state is associated with the value −1, and the rest
with þ1.
Calculating the correlation functions Cβα for this setup,

several differences with the qubit case are immediately
apparent. Most importantly, the correlation functions here
depend on both times and not just their difference. As
corollary, the correlation functions depend on the initial
state. A further difference is that, for the projectively
measured correlation functions discussed here, the order
of the measurements tβ > tα is important. This is not the
case for M ¼ 2, for which Fritz [8] has shown that, for
arbitrary N, the projectively measured correlation functions
are equal to the expectation value of the symmetrised
product 1

2
fQj;Qig, where the operators Q have spectral

decomposition Q ¼ Πþ − Π−, with Π� the projectors
associated with the eigenvalues �1.
We initialize the system so that at time t ¼ 0 it is in state

jψðt ¼ 0Þi ¼ j−j;−ji and set the measurement times as
Ωt1 ¼ π, t2 − t1 ¼ t3 − t2 ¼ τ. For N ¼ 2 we obtain the
familiar qubit results [7]. For N ¼ 3, the LGI parameter
reads

K3 ¼
1

16
þ 2 cosðΩτÞ − 5

4
cosð2ΩτÞ þ 3

16
cosð4ΩτÞ; ð4Þ

which exhibits the key property in which we are interested
—as we see in Fig. 1, this quantity shows a maximum of
Kmax

3 ¼ 1.7565, clearly in excess of the Lüders bound.
Asymptotic limit.—Figure 1 further shows that the

maximum value ofK3 for this model increases as a function
of system size, N. In the limit N → ∞, the maximum
possible violation is Kmax

3 ¼ 3, as we now show. With
measurement timesΩτ ¼ 1

2
π, the correlation functions read

(see the Supplemental Material [26])

C31 ¼ −1; C21 ¼ 1 − 21−2j;

C32 ¼ 1 − 2
1

22j
þ 4

1

24j
− 2

ð4jÞ!
42j½ð2jÞ!�2 : ð5Þ

The corresponding value of K3 as a function of N is shown
in Fig. 1. For finite N, this choice of measurement time
does not give the maximum violation. However, this result
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serves to bound Kmax
3 and, for large j, the asymptotic

behavior is

K3 → 3 −

ffiffiffiffiffi
2

πj

s
: ð6Þ

Thus, at least in the limit that the dimension of the system
becomes infinite, the K3 LGI can be violated by quantum
mechanics all the way up to the algebraic bound.
Maximum violations.—While the precessing spin model

reveals that violations greater than in the qubit case can
occur, the violations for this system are not the maximum
possible violations at a given N and M. Again, this is in
contrast with the M ¼ 2 case where the Rabi oscillation of
the qubit provides the maximum violation.
To investigate the true maximum violations as a function

of N and M, we combine two different methods. The
maximum value for a given M can be obtained by means
of the maximization method for temporal correlations
based on semidefinite programming [9]. This method
provides an upper bound valid for any N, which is attained
for anyN ≥ Nmin. However, the exact value forNmin cannot
be extracted from the solution, even though the method
provides a state and a set of observables attaining the
maximum quantum value (see the Supplemental
Material [26]).

We also pursue a complementary approach in which, for
explicit values of N and M, we numerically maximize K3

over time-evolution operatorsUβα treated as general N × N
unitary matrices. The results from these calculations are
summarized in Table I and Fig. 2. We observe that the
M ¼ 3 andM ¼ 4 bounds from semidefinite programming
are saturated at relatively small system sizes, N ¼ 5 and
N ¼ 8, respectively.
Temporal versus spatial correlations.—Leggett-Garg

inequalities are often referred to as “Bell inequalities in
time”; in addition, it is known that the Lüders bound for the
n-term generalization, for even n, of the original Leggett-
Garg inequality (1) coincides with the Tsirelson bound [9]
for the corresponding Bell inequalities [27,28], and non-
contextuality inequalities [29]. It is therefore a natural
question whether the above general measurement scheme
can provide excess quantum violation of Bell inequalities.
The answer, however, is negative as can be easily deduced
directly from the Tsirelson proof of the quantum bound [3]
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FIG. 1 (color online). The Leggett-Garg quantity K3 for a spin
of length j ¼ ðN − 1Þ=2 precessing in a magnetic field with
measurement times Ωt1 ¼ π, t2 − t1 ¼ t3 − t2 ¼ τ. The meas-
urement is made with M ¼ N projectors (von Neumann scheme)
in the z direction. Inset: K3 as a function of measurement time τ
for various values of N. For N ¼ 2 the maximum is the familiar
qubit or Lüders bound Kmax

3 ¼ 3
2
(solid line). ForN ¼ 3, however,

the maximum value is 1.7565, and this increases with increasing
N. Main panel: The black circles show the maximum value Kmax

3

as a function of system size N ¼ 2jþ 1 for the spin precession
model with measurement times as above. The blue diamonds
show the value of K3 with τ fixed Ωτ ¼ π=2, and the solid line
shows the asymptotic behavior Kmax

3 ∼ 3 −
ffiffiffiffiffiffiffiffiffiffi
2=πj

p
. In the limit

N → ∞, Kmax
3 tends to the algebraic bound of 3.

TABLE I. The maximum value of the LGI parameter K3 as a
function of system size N and number of projectors M. The
leftmost results are from the semidefinite programming (SDP)
approach, while the rest are from direct maximization with fixed
N and M. Here the value assignments qm ¼ 1 − 2δm;−j were
used. In general, the bound changes for different assignments, but
except for the caseM ¼ 6, the above choice was found to give the
maximum violation.

SDP Maximization

M Kmax
3 M N Kmax

3 M N Kmax
3 M N Kmax

3

2 3
2

3 3 2.1547 4 4 2.3693 5 5 2.5166
3 2.211507 3 4 2.1736 4 5 2.3877 5 6 2.5312
4 2.454629 3 5 2.2115 4 6 2.4181 5 7 2.5459
5 2.579333 3 6 2.2115 4 7 2.4315 5 8 2.5506
6 2.656005 3 7 2.2115 4 8 2.4545 5 9 2.5545

2 3 4 5 6 7 8 92.1
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FIG. 2 (color online). A plot of the data in Table I. The
maximum values for each M (from SDP) are shown as straight
lines.
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or by noticing that the commutativity of the measurements,
even when performed sequentially as in contextuality tests,
makes the postmeasurement state, and therefore which
state-update rule is used, irrelevant.
Discussion.—We have shown that higher violations of

the Leggett-Garg inequality are possible within the frame-
work of standard quantum theory plus projective measure-
ments. This is of fundamental importance since classical
theories reproducing, or exceeding, the quantum correla-
tions for temporal scenarios are conceivable and they do not
violate any physical principle, as opposed to Bell scenarios
where such classical theories involve faster-than-light
communication between spacelike separated experiments.
In fact, in a temporal scenario a classical device with
memory, keeping track of the performed measurements
and outcomes, can easily saturate the algebraic bound.
However, such a device cannot be considered in Leggett-
Garg tests since it contradicts the hypothesis of noninva-
siveness of themeasurement: Thememorymust be stored on
a (possibly auxiliary) physical system. The same argument
also applies to the quantum mechanical description of such
a device, which is only possible with POVMs [8]. Such
measurement schemes are, therefore, not meaningful in a
Leggett-Garg test.
From an information-theoretic perspective, it is interest-

ing to relate temporal correlations to the amount of
information transmitted through sequential measurements
[8]. While classical devices with memory, and their
quantum counterparts based on POVMs, can easily saturate
the algebraic bound K3 ¼ 3, the amount of information
transmitted through sequential projective measurements,
subjected to Lüders rule, has been proven to obey stricter
bounds, independent of the system size [9]. Our analysis
shows that degeneracy-breaking projective measurements,
such as those in von Neumann’s scheme, are able to
transmit more information, which is encoded in the differ-
ent evolution paths in the set of quantum states, and can
give rise to perfect correlations (or anticorrelations) in the
limit of an infinite number of projectors. This is in stark
contrast with Bell inequalities, which do not show any
higher violation when tested with more general types of
quantum measurements and are typically saturated only in
the framework of postquantum theories [6].
We stress that this analysis does not contradict the

conclusions drawn in Ref. [9]; information-theoretic prin-
ciples bounding the temporal correlations for projective
measurements may still exist, but such principles must take
into account the fact that the bound depends on the number
of levels accessed via projective measurement.
An application of our results is that of a dimension

witness [24]: An experimenter can certify that she is able
to manipulate at least M levels of a quantum system, if she
can violate the bound for M − 1. Obviously, the condition
of projective measurement must also be verified. Notice
that our dimension witnesses always involve the same

Leggett-Garg inequality and measurement scheme, in
contrast to other proposals based on Bell [24] or non-
contextuality [30] inequalities, and the prepare-and-
measure scenario [31], where specific inequalities violated
only by high-dimensional systems and involving more
complex measurement schemes must be found.
A further interesting application is the discrimination

between Lüders’s and von Neumann’s state-update rules
[25], i.e., which one, if any, correctly represents the
measurement scenario. A violation of the bound corre-
sponding toM ¼ 2 shows a contradiction with Lüders rule.
Intermediate cases are possible and can also be investigated
with our method.
Moreover, we hope that our results will be a catalyst for

experimental investigation of higher-dimensional systems
and the measurement of violations of the Leggett-Garg
inequalities beyond those achievable either with a single
qubit or, indeed, in a Bell scenario.
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