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Charging of a conducting tubular nanopore in a nanostructured electrode is treated using an exactly
solvable 1D lattice model, including ion correlations screened by ion-image interactions. Analytical
expressions are obtained for the accumulated charge and capacitance as a function of voltage. They show
that the mechanism of charge storage, and the qualitative form of the capacitance-voltage curve, are
sensitive to how favorable it is for ions to occupy the unpolarized pore, and the pore radius. Qualitative
predictions of the theory are corroborated by Monte Carlo simulations. These results highlight the effect of
ion affinity to unpolarized pores on the charge and energy storage in supercapacitors. Furthermore, they
suggest that the question of the occupancy of unpolarized pores could be answered by measuring the
capacitance-voltage dependence.

DOI: 10.1103/PhysRevLett.113.048701 PACS numbers: 88.80.fh, 05.50.+q, 82.47.Uv

Efficient energy storage is important for the development
of new technologies [1,2]. Electrical double-layer super-
capacitors (EDLS) which store energy at the electrode-
electrolyte interface continue to draw attention because of
their high power density and stability [3–7]. Porous
electrodes with large surface area are used to maximize
energy storage [8]. A marked increase in the capacitance
per unit surface area was experimentally observed when
the pore size approached the size of an ion [9–11],
suggesting a different mechanism of capacitance when
ions are confined.
Previous theoretical approaches focused on the role

of image charge [12,13] and pore curvature [14–16] in
determining the effect of pore size on capacitance.
Decreasing the pore size increases the ion-image attraction
and screens like-charge repulsion, increasing the capaci-
tance. Simulations using polarizable electrode models cor-
roborated the importance of ion-image interactions [17–22].
The physics of charge storage is more complex,

and received considerable attention [12,13,21,23–26].
Simulations reveal that co-ions are expelled from the pore
at low voltage, while counterion insertion dominates at high
voltages [21,27,28].However, the extent of ionoccupation in
an unpolarized pore is the topic of debate; some simulations
suggest the pores are occupied [21,22,27], while others
suggest the contrary [23–25]. In addition, the amount of
ions in the pore at peak capacitance is as yet inconclusive.
Answers to those questions are required for the optimization
of nanoporous supercapacitors.
To elucidate the mechanism of charge storage in a tubular

nanopore, we consider a 1D lattice of lattice constant 2a,
with a the ion radius (see Fig. 1). The lattice sites are
occupied by either cations (S ¼ 1), anions (S ¼ −1), or
voids or an uncharged solvent (S ¼ 0). The choice of 1D
lattice is justified when the cations and anions are of
comparable size, and are lined up in single file. This is

expected to hold for narrow pores (R ∼ a), where the
capacitance (per unit surface area) is maximal. In this
configuration, each ion experiences the same electrostatic
potential. Furthermore, we assume that ions interact with
their nearest neighbors only. Although the Coulomb poten-
tial in free space is long-ranged, electrostatic interactions are
strongly screened in metallic pores and decay exponentially.
The interaction energy of two monovalent point charges
located at the center of a metallic cylinder of radius R
separated by distance z is given by [29]

VðzÞ
kBT

¼ 2
Lpore
B

R

X∞
m¼1

expð− kmz
R Þ

km½J1ðkmÞ�2
; ð1Þ

where Lpore
B ¼ e2=ðε∞kBTÞ is the Bjerrum length in the pore

with dielectric constant ε∞, and km are zeros of J0ðxÞ.
Constrained ionic motion within the pore meant that effec-
tively only electronic degrees of freedom contribute to dielec-
tric screening and we assume ε∞ ¼ 2 [30]. Experimentally
sub-nanometer tubular nanopores comprised of noble metals
andalloyshavebeen reported [31–34]. For semimetallicpores
with thickwalls, electrostatic interactionswithin the Thomas-
Fermi model are still exponential albeit with a renormalized
pore radius accounting for electric field penetration into the
material [13,35,36]. For simplicity, we focus here onmetallic
cylindrical nanopores, although our model only assumes
narrow tubular pores and screened electrostatic interactions.
The Hamiltonian of the system is

H
kBT

¼ J
X
i

SiSiþ1 þ
1

2

X
i

ðμSiSi þ μSiþ1
Siþ1Þ; ð2Þ

where J ¼ Vð2aÞ=kBT is the effective ion-ion interaction
energy, and

μS¼�1 ¼ u∓w�; μS¼0 ¼ 0; ð3Þ
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where u ¼ eψ=kBT is the dimensionless electrostatic poten-
tial of the pore, and w� is the energy of transfer of one
cation or anion from the pore to the bulk in units of kBT. In
general, wþ ≠ w− due to the specific chemical interactions
between the ion and the pore surface, and will be treated as
model parameters, characterizing the propensity for ions to
occupy the pore at zero voltage (see [38]). It has been shown
[44] that for Hamiltonians with nonlocal interactions, a
mean-field theory can be more adequate than resorting to
nearest neighbor interactions. In our case, however, the
strong exponential screening of ion-ion interactions makes
the nearest-neighbor treatment appropriate, as is indirectly
confirmed by a good qualitative agreement with more robust
Monte Carlo simulations (see below).
Hamiltonian (2) is analogous to the Blume-Emery-

Griffiths (BEG) model describing magnetism with spin-1
nuclei [45], except introducing an effective chemical
potential that couples the ions to the bulk [46]. The exact
partition function can be obtained by evaluating the trace of
the transfer matrix T of Hamiltonian (2),

T ¼

0
B@

e−J−μþ e−ðμþ=2Þ eJ−ð1=2Þðμþ−μ−Þ

e−ðμþ=2Þ 1 eðμ−=2Þ

eJ−ð1=2Þðμþ−μ−Þ eðμ−=2Þ e−Jþμ−

1
CA: ð4Þ

In the thermodynamic limit the number of lattice sites
N → ∞, and only the largest eigenvalue of the transfer
matrix contributes to thermodynamic properties. The larg-
est eigenvalue of T is given by [49,50]

λ¼1

3
½1þ2ew̄−J coshðu−δwÞ�þ2Λ1=2

3
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�
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3
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�
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ð5Þ

where Λ and Δ depend on u − δw, J and w̄, and δw ¼
ðwþ − w−Þ=2 and w̄ ¼ ðwþ þ w−Þ=2 [51].
The total ionic charge per unit surface area is given by

σ ¼ e
2ap

hSii ¼
e

2apN
dF
du

; ð6Þ

where F ¼ − lnZ is the Helmholtz free energy in units of
kBT, Z ¼ λN is the partition function, and p is the
circumference of the pore. Thus,
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where Λu ¼ ∂Λ=∂u and Δu ¼ ∂Δ=∂u.
Consider an example: cations and anions with wþ ¼

w− ¼ w [52], ion radius a ¼ 5 Å, pore radius R ¼ 5.02 Å
and by Eq. (1) J ¼ 1.6. Figure 2(a) shows that at low
voltages the anion population is almost constant while
cations are removed from the pore, decreasing the total ion

FIG. 1 (color online). 1D lattice model for charge storage in a
cylindrical nanopore. R is the pore radius and 2a is the lattice
constant.

FIG. 2 (color online). Ionophilic pores: charge storage occurs
via removing co-ions at low voltages and filling the pore with
counterions at large voltages. (a) The main panel shows the
dimensionless surface charge density ð2ap=eÞσ with increasing
voltage, plotted for various values of transfer energy w. The
insets show the number density of cations and anions
ρ� ¼ ð1=ZÞð∂Z=∂μ�Þ, when w ¼ 0 and the total density of ions
ρtotal ¼ ρþ þ ρ− with increasing voltage, both normalized with
respect to the maximum density. (b)Maximum differential capaci-
tance increases as the transfer energy increases and the pore size
decreases. The differential capacitance is symmetric about u ¼ 0,
and the R < a case corresponds to elongated (e.g., elliptical)
ions. All curves are plotted for J ¼ 1.6 (R ¼ 1.02a), except of
the inset in (b).

PRL 113, 048701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
25 JULY 2014

048701-2



density. The ion density reaches a minimum as the cations
are almost depleted (at u ≈ 4), and then anions start
entering the pore.
An experimentally measurable quantity of EDLS is

the differential capacitance, C ¼ −ðe=kBTÞdσ=du.
Figure 2(b) shows that the threshold voltage for anions
to enter the pore increases and the peak in differential
capacitance becomes sharper as w increases (i.e., the pore is
more “ionophilic”). Exchanging cations with voids is no
longer favorable, and charging is due to swapping cations
with anions. This occurs when the unfavorable interaction
between cation and applied potential surpasses the cation-
anion attraction. Decreasing the pore size enhances the
screening of electrostatic interactions and it becomes easier
to unbind unlike charges and pack like charges. This shifts
the maximum in differential capacitance towards lower
voltages. The height of the maximum increases as the pore
size (hence, J) decreases [see inset of Fig. 2(b)], in
agreement with experimental observation [9].
For strongly ionophilic pores (large positive w), the

population of voids is always negligible and Hamiltonian
(2) is analogous to the standard two-state Ising model,
S ¼ �1 [53], affording a simple expression for the differ-
ential capacitance [26],

C ¼ C0

e4J cosh u

ðsinh2uþ e4JÞ3=2 ; ð8Þ

where C0 ¼ e2=2kBTap (≈2.0a=R Fm−2 for room
temperature and a ¼ 5 Å). At small voltages,
C=C0 ≈ e−2J þ ð1=2Þe−6Jðe4J − 3Þu2. For J> ð1=4Þ ln 3,
the maximum differential capacitance is achieved at
u ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4J − 2þ ðe8J − 4e4J þ 3Þ1=2

p
≈ 2J (for J ≫ 1),

showing that the swapping of cations with anions com-
mences only when the interaction with the applied potential
is larger than like-charge repulsion. When the ion-ion
interaction is weak [J < ð1=4Þ ln 3], cation-anion swap-
ping is facile and the maximum is reached at u ¼ 0 with
Cmax ¼ C0e−2J. This changeover in charging mechanism is
in line with the experimental observations [54]. There, a
peak in capacitance is observed when the average pore size
is large (9.4 Å) and a monotonic decrease is seen for
narrower pores (8.7 Å), where the ion diameter ≈8 Å [55].
We now consider ionophobic pores (w < 0), which may

occur when ions have large bulk entropy compared with
their entropy in the pore, or when there are repulsive ion-
surface chemical interactions. Figure 3 shows that two
maxima emerge in the differential capacitance for large
negative w. These shift to higher voltages as w becomes
more negative. The one-to-two peak transition occurs at a
threshold value of w where ρ� ¼ 1=3 at zero applied
voltage. This is also when the initial decrease in the total
ion density, ρtotal, disappears and the nonpolarized pore is
essentially empty (see insets in Fig. 3).
The two peaks in capacitance arise as ions first need to

overcome ion-surface repulsion to enter the pore and,

subsequently, the ion-ion like-charge repulsion after the
ions begin to accumulate. In the limit of large negative w,
the population of cations in the pore is always negligible
and the system reduces to a 2-spin model with S ¼ −1; 0
for positive applied potentials (see Supplemental Material
[38]). The capacitance in this limit is given by

C ¼ C0

2eJ cosh ½1
2
ðJ − u − wÞ�

½2 coshðJ − u − wÞ þ 4eJ − 2�3=2 : ð9Þ

When J > ln 3, there are two maxima at u ¼ − ln

�
ew

−2ew−J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðw−JÞðeJ − 3ÞðeJ − 1Þ

q �
≈ −w and u ¼

− ln

�
ew − 2ew−J −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðw−JÞðeJ − 3ÞðeJ − 1Þ

q �
≈ 2J − w

(for J ≫ 1), andminimum at u ¼ J − w. Thus, the first stage
of the charging process consists of counterions trying to enter
the pore, which is only possible when the interaction energy
with applied potential overcomes the unfavorable transfer
energy (u ≈ −w). The second stage commences when ions
overcome like-charge repulsion and pack closer, which
occurs when the interaction energy with applied potential
equals the ion-ion repulsion energy (u ≈ 2J − w, see also
[57]). For smaller J, ion-ion repulsion is less unfavorable,
and the two stages merge together, resulting in a single peak
at u ¼ J − w (cf. Fig. 5). Interestingly, the two peaks can be
interpreted as resulting from particle-hole symmetry [57].
One peak in the differential capacitance is seen when w > 0
as the system only needs to overcome ion-ion repulsion.
The second peak in the differential capacitance may be

exaggerated by the lattice model as, in fact, like charges can
position themselves closer to each other continuously.
Grand canonical Monte Carlo simulations (see Fig. 4
and Supplemental Material [38] for details) corroborate
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FIG. 3 (color online). Ionophobic pores: the main panel
shows that the differential capacitance emerges as two
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The insets show how the total density varies with voltage
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cation, anion and void vary at zero applied potential with
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qualitatively the one-to-two peak transition when the ion-
ion interaction decreases. Heuristically, the screening
length of the electrostatic interactions acts as a natural
length scale even in the off-lattice case. The peaks in
differential capacitance predicted by the theory and sim-
ulation agree closely. The difference in the magnitude and
position of the second peak reflects that lateral entropy and
off-lattice effects (e.g., breaking particle-hole symmetry;
see [57]) make the second charging process less abrupt and
occurring over a broader range of voltages.
The utility of supercapacitors lies in efficient charge

storage. The stored energy density is given by EðuÞ ¼R
u
0 VCðVÞdV. The inset of Fig. 5 shows that at low
voltages, ionophilic capacitors (w > 0) readily charge

and store a larger amount of energy. For strongly iono-
phobic pores, charges only enter the pores after u ≈ −w, but
the system does more work to draw the charges in.
Therefore, for high voltages, ionophobic capacitors achieve
larger energy density. Thus, the model predicts that systems
with favorable ion-surface interaction are optimal for low
voltage applications, whereas those with unfavorable inter-
actions are optimal for high voltage applications. Such
interactions can be manipulated by altering the chemical
composition of the ion and the pore.
Conclusion.—We considered the charging of a tubular

nanopore in a 1D lattice model, and showed that the
mechanism of charge storage depends on the pore size and
interaction between ions and the nanopore surface. Three
distinct charging mechanisms were identified. With small
pore size, the system first expels the co-ions before filling the
pore with counterions. When the energy penalty for ions to
enter the pore is large, pore filling only commences when the
interaction energywith applied potential is larger than the ion-
pore repulsive interaction. A separate stage of “ion packing”
starts after interaction with the applied potential surpasses
ion-ion repulsion. This agrees qualitatively withMonte Carlo
simulations. Experimental data on the capacitance-voltage
dependence in nanostructured electrodes are currently scarce,
and our model suggests a possible experimental handle to
study the different regimes of charge storage [60].
Our theory is based on thermodynamics—kinetic con-

siderations suggest that ionophobic pores charge faster.
Ionophilic pores, despite being able to store more energy at
low applied voltage (cf. Fig 5), can only charge by
“swapping” out co-ions, which is slow for longer pores.
This process could be accelerated if the pore wall or the
ions are deformable, or ion shape anisotropy allows ions to
slide past each other. Those finer kinetic aspects are
considered elsewhere [61].
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