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We predict and demonstrate that a disorder-induced carrier density inhomogeneity causes magneto-
resistance (MR) in a two-dimensional electron system. Our experiments on graphene show a quadratic MR
persisting far from the charge neutrality point. Effective medium calculations show that for charged
impurity disorder, the low-field MR is a universal function of the ratio of carrier density to fluctuations in
carrier density, a power law when this ratio is large, in excellent agreement with experiment. The MR is
generic and should occur in other materials with large carrier density inhomogeneity.
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Introduction.—The classical magnetoresistance of a
material arises when the Lorentz force caused by an applied
magnetic field has a component acting against the direction
of electron motion thereby decreasing the conductivity of
an electronic material. This property has long been of
interest both as a tool to probe the fundamental properties
of an electronic material (such as the topology of the
electron bands) [1] and also for technological applications
such as its use in magnetic memory read-heads [2]. Awell-
known result is that single electronic bands (in systems
with a spatially homogenous carrier density) will have no
magnetoresistance, while the presence of two or more
electronic bands with different carrier mobilities readily
gives rise to a classical magnetoresistance [3]. This
classical effect is different from weak localization [4] (a
quantum interference effect present at low temperatures) or
Abrikosov’s quantum magnetoresistance [5] (that occurs in
gapless semiconductors in the high field Landau quantized
regime).
Graphene is an example of a material with more than one

electronic band. This single-atom-thick sheet of carbon
comprises an electron band and a hole band each with a
linear dispersion that touch at a topologically protected
Dirac point [6,7]. It was shown by Ref. [8] that if both
bands are occupied, one then expects a classical magneto-
resistance even if the electron and hole bands have the same
electronic mobility (this is by virtue of the Lorentz force
being of opposite sign for the electron and hole carriers).
While this two-channel model has been reasonably suc-
cessful at modeling the density dependence of graphene
magnetotransport at fixed magnetic field, it is unable to
quantitatively explain the magnetic field dependence at
fixed carrier density. In this context, the authors of Refs. [9]
and [10] developed an effective medium theory (EMT)
approximation where the planar landscape is broken up into

electron regions and hole regions with different area
fractions but where each region had a uniform conductivity.
This description fails to describe experiments away from
the symmetry point (see Ref. [11] for a detailed discussion
of these earlier theoretical and experimental results).
However, we note that the two-channel model of Hwang
et al. and the EMT calculation of Stroud and collaborators
both predict that the magnetoresistance should vanish away
from the Dirac point when only a single band is occupied.
By contrast, in this work we discuss a carrier density
inhomogeneity contribution to the magnetoresistance that
persists away from the Dirac point and exists even if only
one electronic band is occupied. For concreteness we focus
our discussion on graphene which has a linear dispersion,
but the mechanism itself does not rely on the linear
dispersion and should therefore be observable in other
materials with large spatial inhomogeneity in the carrier
density distribution.
The idea of a disorder-induced magnetoresistance is not

new. While working on silver chalcogenides, Parish and
Littlewood [12,13] predicted such an effect by mapping the
problem onto a random resistor network and solving it
numerically. They focused only on the high magnetic field
regime and found a linear magnetoresistance, but quanti-
tative comparisons with experiments remained challenging
[14]. By contrast, in this work, we develop a full effective
medium theory to study the low field regime and make
quantitative predictions that are then compared to exper-
imental results. The basic mechanism for inhomogeneity-
induced magnetoresistance is illustrated qualitatively in
Fig. 1, where we show two regions with different local
carrier densities. The Hall field, which only depends on the
average carrier density, is the same in both regions and is
perpendicular to both the applied electric field and the
applied magnetic field. As seen in the figure, the magnetic
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field results in a Lorentz force acting on the charge carriers
that reduces the drift velocity in both regions giving a
classical magnetoresistance.
Experimental procedure.—We measure the magnetotran-

sport in single-crystal graphene synthesized by chemical
vapor deposition on Pt foil [15,16]. The three CVD-grown
samples 1, 2, and 3 were prepared at temperatures of
1000 °C, 950 °C, and 900 °C, and hydrogen mass flow rates
of 700, 500, and 380 sccm, respectively. The synthesized
graphene is then coated with poly(methyl methacrylate)
(PMMA) resist with a spinning speed of 2000 rpm and then
transferred to a 300 nm SiO2 on Si substrate by electrolysis
method [15]. Electron-beam lithography using PMMA resist
is used to establish Cr=Au contacts via liftoff and again to
define the graphene in a Hall-bar geometry of 40 μm long
and 10 μm wide via oxygen plasma etching. All three
devices have the same geometry.
As discussed in detail elsewhere [16], the differences

between the Raman spectra of the three samples suggest
the presence of nanocrystalline carbon impurities on the
continuous crystalline graphene layer; sample 1 has the
greatest concentration of impurities and sample 3 has
the least. These impurities do not correlate with mobility,
and so for the purposes of this work, the samples simply
have varying amounts of disorder.
A constant current of 10 nA is applied in the four-probe

measurement. Figure 2(a) shows the zero-field conductivity
as a function of back-gate-induced carrier density n0 for

samples 1, 2, and 3. We observe the typical approximately
linear dependence of conductivity as a function of carrier
density [7], and from the data we can extract the charge-
impurity limited mobility μ of the three samples as
8300 cm2=V s, 8100 cm2=V s, and 10 700 cm2=V s for
samples 1, 2, and 3, respectively (see the Supplemental
Material [17]). These values of mobility are among the
highest for CVD-grown graphene transferred to SiO2. Also
shown in Fig. 2(a) are data from an exfoliated graphene
sample [11], which has charge-impurity limited mobility μ
of 18 200 cm2=V s.
We also experimentally measure the minimum conduc-

tivity σmin, and use this to extract the disorder-induced
carrier density fluctuations nrms using σmin ¼ nrmseμ=

ffiffiffi
3

p
.

The
ffiffiffi
3

p
factor comes from an effective medium theory

calculation at zero magnetic field (see Ref. [18]). The
values for nrms extracted this way are between 20% and
40% lower than what one would expect from the self-
consistent theory for graphene transport [19] that is
normally [7] used to understand the graphene minimum
conductivity. We attribute this discrepancy to the non-
perfect transmission across p-n junctions separating the
electron and hole regions or additional scattering by
the nanocrystalline grain boundaries. As will become
clearer later, we parametrize our data as a function of
the ratio n0=nrms, where both the average carrier density
n0 and the density fluctuations nrms are measured
independently.
Figure 2(b) shows the longitudinal resistance Rxx and

Hall conductivity σxy as a function of back-gate voltage for
all three samples at T ¼ 4.2 K and B ¼ 8 T. The data
clearly show Subnikov–de Haas oscillations and quantum
Hall plateaus with σxy ¼ 4ðnþ 1=2Þe2=h (where the factor
1=2 is the fingerprint of the π Berry’s phase in monolayer
graphene) [20–22]. Figure 2(c) shows the magnetoresist-
ance at 4.2 K. At high magnetic field and low carrier
densities, we sometimes observe a linear magnetoresist-
ance. However, for sufficiently low magnetic fields, we
always observe a quadratic magnetoresistance, where for
different values of carrier density n0 and density fluctuation
nrms, we can fit our data to

ρxxðBÞ ¼ ρxxðB ¼ 0Þ½1þ AðμBÞ2� ð1Þ

and extract the dimensionless coefficient A½n0; nrms� from
our data. We can also fit the data over a larger range of B
using the phenomenological formula of Ref. [11],
ρxxðBÞ ¼ ρxxð0Þf1− αþ ½α=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2AðμBÞ2=α

p
�g−1, where

α is a fitting parameter. Notice that for μB ≪ 1, this
phenomenological expression gives the same value for A
as Eq. (1). These fits are shown in Fig. 2. Since we are
interested in the classical magnetoresistance, we exclude
quantum interference by removing the lowest magnetic
fields in the fitting (see the Supplemental Material [17]).
We also found no significant temperature dependence of A

FIG. 1 (color online). In the upper panels, we show forces
(apart from the drag force) and electron drift velocities in a
sample with two regions of different charge carrier concentrations
when there is no magnetic field. The bottom left (right) panel
illustrates a region of higher (lower) carrier concentration than the
sample average along with all the new forces that appear (apart
from the change in drag force) when the magnetic field is applied.
The change in drift velocity Δvdrift is against the direction of
motion of the electron for both regions shown in the bottom
panels and this is the microscopic origin of magnetoresistance.
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between 4 and 50 K. Our main experimental observations
in Fig. 3 are that A½n0; nrms� scales as a function of the ratio
n0=nrms and that for large n0=nrms it follows a power law
A ∼ ðn0=nrmsÞ−2 and persists far away from the Dirac point
(i.e. n0 > nrms) and is caused by carrier density inhomo-
geneity and not due to the presence of both electrons and
holes close to the Dirac point.
Theoretical analysis.—The starting point for this analy-

sis is to assume that the carrier density n is Gaussian
distributed centered at an average carrier density n0 with a
rms fluctuation given by nrms (we denote this distribution as
P½n; n0; nrms�). For the specific case of graphene, the
authors of Ref. [18] justified theoretically the use of a
Gaussian distribution, and at least close to charge neutral-
ity, this has been seen in several experiments starting with
Ref. [23]. In this context signðn0Þ ¼ �1 represents the
electron and hole bands, respectively. For the case where
charged impurities dominate the transport properties,
knowing the impurity concentration nimp and the distance
d away from the graphene sheet, one can calculate nrms both
analytically [19] (using the self-consistent approximation)
and numerically [24] (using the mesoscopic density func-
tional approach). The carrier mobility μ is calculated using
the semiclassical Boltzmann transport theory [7]. In what
follows, for simplicity, we assume that μ is density
independent, and we show in the Supplemental Material
[17] that the weak density dependence of the carrier
mobility hardly changes any of our results. Since n0 is
controllably tuned by a back gate, and the parameters nimp
and d can be obtained from the conductivity at zero
magnetic field, all the parameters used in our theory for
magnetoresistance can be fixed by measurements done
before applying a magnetic field.

Before discussing our inhomogeniety-induced magneto-
resistance, we first briefly comment on previous theories
for graphene magnetoresistance in the context of our
framework. For a single channel model, it is easy to verify
that there is no magnetoresistance i.e. ρxxðBÞ ¼ ρxxð0Þ [1].
The two-channel model [8] assumes that the total conduc-
tivity is the sum of the electron and hole channels,
σxx ¼ σexx þ σhxx, and similarly for the transverse conduc-
tivity, σxy ¼ σexy þ σhxy. Defining η ¼ n0=nrms, a straight-
forward calculation gives the quadratic coefficient of the
magnetoresistance (see definition above) as

A

�
η ¼ n0

nrms

�
¼ 1 −

�
η

ffiffiffiffiffiffi
2π

p

2e−η
2=2 þ η

ffiffiffiffiffiffi
2π

p
Erfðη= ffiffiffi

2
p Þ

�2

: ð2Þ

Here ErfðxÞ is the error function [25]. Notice that A½η� is
independent of the carrier mobility μ and depends only on
the ratio of the carrier density and density fluctuation. This
remains true so long as μ is independent of carrier density,
and in this sense A½η� becomes a universal function (where
the different theoretical models each give a different
functional form for A½η�). The two-channel result Eq. (2)
is shown in Fig. 3; it has the value A ¼ 1 at the Dirac point,
stays roughly constant for n0 < nrms, and then rapidly
decreases for n0 > nrms as the second channel becomes
depopulated. The inadequacy of this model to explain
experimental data led the authors of Ref. [10] to develop an
area-fraction effective medium theory. This model assumes
that there are electron regions with area-fraction fe and
conductivity σe ¼ neeμ, and hole regions with fh and
σh ¼ nheμ. The effective medium conductivity tensor σEMT
is obtained by solving

P
i¼e;hfiδσið12 − ΓδσiÞ−1 ¼ 0,
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FIG. 2 (color online). Summary of the experimental results. (a) Conductivity as a function of carrier density n (back-gate voltage Vg) at
zero magnetic field for CVD-grown samples 1, 2, and 3, and the exfoliated graphene sample from [11]. (b) Longitudinal resistance Rxx
and Hall conductivity σxy as a function of carrier density n (back-gate voltage Vg) for CVD-grown samples 1, 2, and 3 and exfoliated
sample at T ¼ 4.2 K and B ¼ 8 T. Top and bottom horizontal scales apply to both (a) and (b). (c) Low field magnetoresistance of samples
1 (left), 2 (middle), and 3 (right).Data are open symbols taken at the carrier density indicated in legend. Solid lines are fits described in the text.
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where the shorthand notation δσi ¼ σi − σEMT is used. In
the case where the electron and hole puddles can be
assumed to be nearly circular, the depolarization tensor Γ ¼
−12=ð2σxxEMTÞ takes a simple scalar form (see Ref. [26] for
details). In this case, a remarkable result [9] is that when
n0 ¼ 0 (and hence fe ¼ fh), the magnetoresistance is
given by ρxxðBÞ ¼ ρxxð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðμBÞ2

p
. Since the self-

consistent theory [19] gives ρxxð0Þ ¼
ffiffiffi
3

p
=ðnrmseμÞ and

μ½m2=V s� ≈ 50=ðnimp½1010 cm−2�Þ, the full magnetoresist-
ance at the Dirac point is completely specified. In particu-
lar, we have A½0� ¼ 1=2. This model can be solved
numerically away from the Dirac point, and the results

are shown in Fig. 3. Notice again that for n0 > nrms, the
area fraction of the hole channel vanishes and the mag-
netoresistance drops rapidly.
The inadequacy of the two-channel model is that it does

not account for the spatial inhomogeneity of the carrier
density, and the inadequacy of the area-fraction EMT is that
although it allows for two-dimensional space to broken up
into regions of electron and hole puddles, all electron and
hole regions are assumed to be uniform. What is required is
an effective medium approach with a continuous distribu-
tion of carrier density (similar to what has been developed
in Refs. [27,28] for transport in zero-magnetic field). Using
the form of the depolarization tensor derived in Ref. [26],
for our system, we can derive a set of coupled equations

Z
dnP½n;n0;nrms�

σ2xx½n�− ðσEMT
xx Þ2þðσEMT

xy − σxy½n�Þ2
ðσEMT

xx þ σxx½n�Þ2þðσEMT
xy − σxy½n�Þ2

¼ 0;

ð3aÞ
Z
dnP½n;n0;nrms�

σxy½n�− σEMT
xy

ðσEMT
xx þ σxx½n�Þ2þðσEMT

xy − σxy½n�Þ2
¼ 0:

ð3bÞ

It is understood from Eq. (3) that σxx½n� and σxy½n� are
obtained from some homogenous density model and then
these coupled integral equations give the correct averaging
over the density inhomogeneity. One can verify that for
B ¼ 0, we get σEMT

xy ¼ 0, and the equation for σEMT
xx

reproduces the zero-magnetic field effective medium theory
results of [18] and [27]. Moreover σEMT

xy ¼ 0 also for
n0 ¼ 0, and a numerical solution of the σEMT

xx gives results
very close to ρxxðBÞ ¼ ρxxð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðμBÞ2

p
(although, tech-

nically, it need not have given the same result since our
model allows for carrier density inhomogeneity inside each
puddle). We emphasize that Eq. (3) can be solved with any
model for the density profile P½n; n0; nrms� and scattering
potential as input for μ. In the simplified case where μ is
independent of density, e.g. for charged impurity scattering,
Eq. (3) simplifies considerably and the normalized mag-
netoresistance ρxxðBÞ=ρxxð0Þ depends only on the ratios
n0=nrms and μB. In this case, both σEMT

xx and σEMT
xy can be

written in terms of dimensionless coefficients y1 and y2 as

σEMT
xx;xy ¼ y1;2nrmseμ=½1þ ðμBÞ2�; ð4Þ

where y1;2 ¼ y1;2½n0=nrms; μB� are computed in the
Supplemental Material [17]. The coefficient of quadratic
magnetoresistance obtained by solving these equations
numerically has been plotted in Fig. 3.
It is important to notice that our inhomogeneous carrier

density driven magnetoresistance persists far away from
the Dirac point, and is not specific to the linear dispersion
of graphene. Generally, there is remarkable agreement
between the theoretical and experimental results presented

FIG. 3 (color online). Theoretical and experimental results for
the dependence of the coefficient of quadratic magnetoresistance
(a) plotted as a function of the carrier density n0 and gate voltage
Vg and (b) as a function of the ratio between carrier density n0
and carrier density fluctuations nrms. The predictions of the earlier
theoretical models including the two-channel model by Ref. [8]
and the area fraction effective medium theory by Ref. [10] are
shown as solid lines. In both earlier models, the magnetoresist-
ance vanishes quickly once n0 > nrms. By contrast, the magneto-
resistance discussed in this work persists away from the Dirac
point. For n ≫ nrms, we find both theoretically and experimen-
tally a power-law dependance: A ¼ ð1=2Þðn0=nrmsÞ−2.
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here. As we explain in the Supplemental Material [17], the
discrepancy close to the Dirac point (for small values of
n0=nrms) can be directly traced to the overestimation of σmin
in the self-consistent theory and corresponding difference
between the theoretical and experimental values used for
nrms close to the Dirac point.
In summary we have shown both theoretical and exper-

imental results for an inhomogeneity-induced quadratic
magnetoresistance that scales as a power law of the ratio
n0=nrms. While we focused on the case of charged impu-
rities in graphene, the mechanism itself requires only
spatial fluctuations in the carrier density and should there-
fore be observable in other systems.
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