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We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a
suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit
interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural
eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling
electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the
mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy
splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-
resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of
the leads, for instance, of T ¼ 10ω.
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Beyond proving useful technologically as ultrasensitive
detectors of charge [1] and spin [2], nanoelectromechanical
systems are also interesting to address fundamental issues
as they can enter the quantum regime at low temperature
[3,4]. For instance, recent experiments succeeded in
approaching the quantum ground state in solid objects
formed by a huge number of atoms [5–7]. Particularly
interesting nanoelectromechanical systems are suspended
carbon nanotube quantum dots (CNTQDs) [8,9]. They
emerged as an ideal system for fundamental studies in few
electron quantum dots [10] as, for instance, demonstrated by
the coherent coupling between the electron spin and its
orbital magnetic moment (spin-orbit interaction) [11–13]. In
addition, suspended structures also have outstanding
mechanical properties as carbon nanoresonators can have
frequencies in the range f ∼ MHz − GHz and yet large
quantum zero-point fluctuations (δu ∼ 10 pm), making them
ideal candidates for observing quantum mechanical effects.
In these systems, quantized vibrational modes appear in low
temperature transport spectroscopy [14–17].
Despite this amazing progress, detecting quantum sig-

natures of flexural modes [Fig. 1(a)] still remains a
challenge, hindered by the difficulty of cooling such
low-frequency modes to temperatures in the quantum
regime, viz., kBT < hf. Although shorter resonators with
higher eigenfrequency can in principle overcome the
problem [18,19], cooling these modes towards their quan-
tum ground state with phonon occupation number n̄ ≪ 1
remains a demanding achievement. Even at cryogenic
temperatures and with suspended nanotubes of length
L ∼ 1 μm, which allow flexible gate-voltage control
[20,21], this remains a serious challenge. If proved feasible,
such a quantum mechanical mode would be an ideal
platform to test decoherence mechanisms and even exotic
phenomena such as wave-function collapse theories in

quantum states with displaced centers of mass [22,23].
Another possible application is as realization of mechanical
qubits in buckled carbon nanotubes [24–27].
In this Letter, we show that the flexural modes can be

efficiently cooled towards their quantum limit when a spin-
polarized current is injected from ferromagnetic leads and
when a vibrational spin-flip interaction is considered
(Fig. 1). Considering a flexural mode of frequency ω
in a CNTQD with a quality factor Q ¼ ω=γ0 ≳ 104

(γ0 is the mechanical damping rate) [8,28], the resonator
can be driven towards a nonequilibrium steady state with a
phonon occupation n̄ ¼ ½γ0nBðωÞ þ γn�=ðγ0 þ γÞ, in which
nBðωÞ ¼ 1=½expðω=TÞ − 1� is the thermal equilibrium
occupation (kB ¼ ℏ ¼ 1), and γ and n are, respectively,
the damping and the effective phonon occupation induced
by the spin-vibration interaction, which we discuss below.
Different ways to achieve cooling of flexural modes have

been analyzed [29,30]. The spin valve that we propose has
two important advantages. First, the spin is directly coupled
to the vibration so that efficient ground-state cooling n̄ ≪ 1

is achieved even for small spin polarization of the contacts.
Second, the operating regimes, in which cooling or heating
of the resonator is realized, can be controlled not only
electrically but even magnetically: The spin valve switches
from one to the other regime either by varying the gate or
the bias voltage or either by only reversing the magnetic
polarization in one or in both ferromagnetic leads. Such a
system represents, hence, a promising candidate for the
thermal control of nanoresonators in spintronic devices.
Previous works also demonstrated that interplay between
spin and nanomechanics can lead to interesting effects such
as mechanical self-excitations [31].
Spin-vibration interaction.—The system is sketched in

Fig. 1(a). For a single flexural mode n with frequency ωn
and oscillating along the x axis, suspended CNTQDs are
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characterized by a spin-vibration interaction of the form
Ĥn ¼ λnσ̂xðb̂n þ b̂†nÞ in which σ̂x is the component of the
spin operator (Pauli matrix) parallel to the mechanical
motion and b̂n (b̂†n) is the bosonic creation (annihilation)
operator associated with the harmonic mode. This kind of
interaction can be achieved extrinsically or intrinsically.
In the first case, the interaction arises from the relative

motion of the suspended nanotube in a magnetic gradient
added to the homogeneous magnetic field B in a similar
setup as used, e.g., in magnetic resonance force microscopy
experiments [2,32,33] or in magnetized microcantilevers
coupled to nitrogen vacancy centers in diamond [34,35].
For small harmonic oscillations, one obtains λn ≃
μBð∂Bx=∂xÞXn with μB the Bohr magneton, ∂Bx=∂x the
average gradient along the tube’s axis, Xn ¼ unhfnðzÞi the
amplitude of the single vibrational mode with
un ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi

2mωn
p

, fnðzÞ the mode waveform, and h� � �i
the average over the electronic orbital in the dot. We
estimated λ ¼ 0.5 MHz for the fundamental (even) mode
with ∂Bx=∂x ¼ 5 × 106 T=m [36,37]
In the second case, the spin-orbit coupling due to the

circumferential orbital motion mediates the interaction
between the electron spin and the flexural modes [41–43].
In the one-orbital (valley) subspace, the interaction cou-
pling constant reads λn ≃ ðΔSO=2ÞdXn=dz with ΔSO the
spin-orbit coupling constant and dXn=dz ¼ unhdfnðzÞ=dzi
[37]. In this case, one can estimate λ ∼ 2.5 MHz for the first
odd mode [37,42]. We notice that for a quantum dot formed
in a nanotube with symmetric orbital electronic density, the
two interactions discussed here couple vibrational modes of
different parity. Other microscopic mechanisms lead also to
similar coupling [44].
In the presence of magnetic fields, the four-level

structure of a single quantum dot shell can be tuned.

In particular, close to a crossing point, it is possible to have
two levels of opposite spin and the same orbital so that their
energy separation is smaller than the temperature T or the
bias voltage V and yet larger than the energy distance from
other levels [12,37,42]. Focusing on the transport on this
two-level subspace, we consider the model Hamiltonian

Ĥ ¼ Ĥl þ Ĥd þ λðd†þd− þ d†−dþÞðb̂† þ b̂Þ þ ωb̂†b̂; ð1Þ
in which the dots part reads Ĥd ¼

P

σεσd̂
†
σd̂σ and the lead

part reads

Ĥl ¼
X

ασk

½εkσ ĉ†ασkĉασk þ ðtασ ĉ†ασkd̂σ þ H:c:Þ�. ð2Þ

The operators ĉ†ασk and d̂†σ are creation operators for the
electronic states k in the α ¼ l; r (left, right) leads and the
dot states with spin σ ¼ �. The latter have energy εσ ¼
ε0 þ σεz=2with the energy separation εz. The ferromagnets
are magnetized in the z directions and their effect on the
spin-polarized tunneling is captured in spin-dependent
tunneling rates Γσ

α ¼ πjtασj2ρασ. Here, ρασ denotes the
spin-σ density of states at the Fermi level of lead α,
and tασ the tunneling amplitude, and we can define a
polarization pα ¼ ðΓþ

α − Γ−
α Þ=ðΓþ

α þ Γ−
α Þ.

Results.—In the regime of weak spin-vibrational inter-
action, electrons tunneling from the leads to the dot yield a
(small) renormalization of the vibration frequency and a
damping of the mechanical motion with friction coefficient
γ. In addition, at finite bias voltage, the electron current
drives the mechanical oscillator to a steady nonequilibrium
regime with a phonon occupation n. To determine these
quantities, we employ the Keldysh Green functions tech-
nique to calculate the phonon propagator Dðt; t0Þ ¼
−ihTCûðtÞûðt0Þi, where TC denotes the time-ordering oper-
ator on the Keldysh contour C [45]. We have solved the
Dyson equation with the self-energy associated with the
spin-vibration interaction [Eq. (2)] to the leading order in λ.
This approximation is sufficient for γ ≪ ω [46]. We find
γ ¼ P

αβssγ
s
αβ (s ¼ �1) and for the occupation

n ¼ 1

γ

X

αβs

sγsαβnB½ωþ sðμα − μβÞ�: ð3Þ

Here, we introduced the lead chemical potentials μα and

γsαβ ¼
λ2

2

Z

dε
2π

Ts
αβðε;ωÞfαðεÞ½1 − fβðεþ sωÞ�; ð4Þ

with the Fermi function fαðεÞ ¼ f1þ exp ½ðε − μαÞ=T�g−1,
Ts
αβðϵ;ωÞ ¼

P

σL
σ
αðεÞL−σ

β ðεþ sωÞ, and Lσ
αðεÞ ¼ 2Γσ

α=
½ðΓσ

l þ Γσ
rÞ2 þ ðε − εσÞ2�.

The essential point of our proposal is that z (or y) spin
polarized electrons injected in the dot are perpendicular
to the spin component coupled to the nanotube oscillations
(x axis) so that spin-flip transitions are needed to exchange

FIG. 1 (color online). (a) Schematic view of a carbon nanotube
quantum dot suspended between two ferromagnetic leads.
Because of the nanotube spin-orbit interaction and/or a magnetic
field gradient, the dot spin’s component parallel to the mechanical
displacement u is coupled to the flexural mode. (b) Examples of
inelastic vibron-assisted tunneling through a single level with
spin up or down (upper and lower graph). The spin-vibration
interaction allows spin-flip tunneling through emission (red thin
arrow) or absorption (blue thick arrow) of an energy quantum
ℏω to or from the vibrational mode. These processes are
characterized by the rates γþlr and γ−lr, respectively.
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energy with the vibrational mode. These inelastic processes
are characterized by the rates γsαβ [Eq. (4)] describing a spin
flip of an electron tunneling from lead α to lead β
accompanied by the absorption (s ¼ þ) or emission
(s ¼ −) of an energy quantum of the vibron. The weighted
sum gives the total damping coefficient γ.
On the one side, for the parallel configuration of the

ferromagnets plpr > 0, we always found heating of the
oscillator at finite bias voltage and we will not further
consider this case. On the other side, for the antiparallel
configuration, we obtain heating and efficient cooling also
for different polarizations jplj ≠ jprj. We found similar
results even in the limit of one unpolarized lead (see
discussion below). Hereafter, we restrict our discussion
to the antiparallel configuration with the same polarization
pr ¼ p and pl ¼ −p with sgnðpÞ ¼ sgnðεzÞ. We note that
the inverted polarizations with sgnðpÞ ¼ −sgnðεzÞ is equiv-
alent to a reversed voltage. Depending on the sign of the
voltage, we also found a strong overheating of the
mechanical resonator n̄ ≫ 1 for which the system
approaches an instability region with a negative damping
γ < 0. This configuration corresponds to the operating
regime in which phonon lasing has been discussed recently
[47]. Electromechanical instability was also obtained in a
different microscopic model based on the magnetomotive
interaction between current and vibration in Ref. [31] in
which it was shown that the feedback action of the vibration
on the current can lead to mechanical self-excitations in a
suspended CNTQD in contact with a single ferromagnet. In
the remainder of the Letter we consider antiparallel
magnetizations with p > 0, εz > 0, and V > 0.
For T ≫ Γσ

α, one can use an analytic approximation for
the rates γsαβ, which is in excellent agreement with the full
results [Eq. (4)]. The analysis of such an incoherent regime
can also be addressed by using a Pauli master equation [48].
The Lorentzian functions appearing in Eq. (4) can be
treated separately as δ functions in the integral and we can
cast each rate as the sum of two rates γsαβ ≃

P

σγ
sσ
αβ, for

tunneling through the dot level σ, respectively. They read

γsσαβ ¼
λ2

Γσ
l þ Γσ

r
fΓσ

αΓ−σ
β Tsσþ fαðεσÞ½1 − fβðεσ þ sωÞ�

þ Γ−σ
α Γσ

βT
sσ
− fαðεσ − sωÞ½1 − fβðεσÞ�g ð5Þ

with Tsσ
� ¼ 1=½ðΓ−σ

l þ Γ−σ
r Þ2 þ ðσεz � sωÞ2�.

Fully polarized contacts.—To gain insight into the
problem, we describe in detail the case of fully polarized
ferromagnets although efficient cooling is achieved even
for small polarizations. For p ¼ 1, the diagonal rates vanish
γsll ¼ γsrr ¼ 0, as the electron cannot come back to its
original lead after a spin flip. Moreover, in the high-voltage
limit eV ≫ T (e > 0), we can safely neglect the processes
γsrl ≃ 0 being V > 0 as electrons tunneling from the right
lead are Pauli blocked. Accordingly, the total damping
reduces to the sum of only two processes γ ≃ γþlr − γ−lr and

the expression of n simplifies to the average distribution
resulting from these two competing processes

n≃ γþlrnBðωþ eVÞ − γ−lrnBðω − eVÞ
γþlr − γ−lr

≃ γ−lr
γþlr − γ−lr

: ð6Þ

The second step in Eq. (6) holds for eV ≫ ω, when the
nonequilibrium phonon occupation is completely ruled by
the ratio γþlr=γ

−
lr.Although in the regionof stabilitydefinedby

γþlr > γ−lr the total damping is always positive, n can show
heating or cooling: for γþlr ≳ γ−lr the mechanical oscillator is
almost undamped and it is actively heated to n≳ nBðωÞ
whereas for γþlr ≫ γ−lr the dominant emission processes yield
an efficient cooling of the oscillator, viz.,n ≪ nBðωÞ. This is
the main mechanism of cooling underlying our proposal.
We now discuss the result for the fully polarized case in

Fig. 2. Since Γþ
l ¼ Γ−

r ¼ 0 one of two terms appearing in
Eq. (5) vanishes for each spin channel. For symmetric
contacts Γ−

l ¼Γþ
r ¼Γ and setting Ts¼λ2Γ=½Γ2þðω−sεzÞ2�,

the single spin-channel rates read

γsσlr ¼ Tsflðεσ − sωδσþÞ½1 − frðεσ þ sωδσ−Þ�: ð7Þ

In Fig. 2(a) we show an example of the case εz ≫ ω for an
asymmetric voltage bias forwhich only the spin-down level is
involved in transport. In this limitTþ ≃ T− and the difference
between the absorption rate γþlr and emission rate γ−lr is mainly
given by the product of the electronic occupations in Eq. (7).
Thesystemisexpected to switch fromcooling toheatingwhen
wemove fromthe regimeγþlr ≫ γ−lr to the regime γþlr ≳ γ−lr. Ina
simplepicture, theswitch is expectedclose to the lineμr ¼ ε−.
For μr > ε− (cooling region) the emission processes are
suppressed due to the occupation of the low energy level in
the right lead [left inset of Fig. 2(a)]. For μr < ε− (heating
region) emissionprocesses are relevant and they competewith
the absorption ones [right inset of Fig. 2(a)]. At finite
temperature, the thermal broadening of the Fermi functions
causes a smooth transitionbetween the two regimes so that the
crossing line corresponding to n ¼ nB occurs at ε− ¼ μr þ
8T2=εz to leading order in T=εz and for T ≫ ω. Note that, in
this discussion, the left lead plays only the role of a source for
injecting one electron with spin up in the dot level. Hence
cooling is achieved even for a normal left contact (pl ¼ 0).
The minimum of the phonon occupation as a function of

voltage decreases with the ratio εz=ω. The optimal cooling
is achieved at εz ¼ ω. At this point and in the limit
eV ≫ ðT;ω; ε0Þ, fl ≃ 1 and fr ≃ 0 and the phonon occu-
pation of Eq. (3) becomes n≃ ðΓ=ωÞ2. Further decreasing
the ratio εz=ω does not improve the cooling.
The strong cooling obtained for the resonant regime can

be explained as follows. The absorption processes for each
spin channel are now the same and we have γþþ

lr ¼ γþ−
lr as

the virtual levels ε− þ ω and εþ − ω, which are involved
in the spin-flip tunneling for cooling, coincide, respectively,
to the real dot spin levels εþ and ε−. This yields a strong
enhancement of the (transmission) function Tþ (phonon
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absorption) as compared to T− (phonon emission) in
Eq. (7), namely Tþ ≫ T−, which explains the strong
cooling effect. As a consequence, n has a weak dependence
on the alignment of the average level position ε0 and the
lead chemical potential μα. In Fig. 2(b) we show the
resonant case with a finite intrinsic damping γ0=ω ¼
10−5 to illustrate the behavior of n̄.
Effect of finite polarization.—We discuss now the effect

of finite polarization. For symmetrically applied voltage,
the results for the minimal value n̄min as a function of the
energy separation for different polarizations are shown in
Fig. 3(a). Even in this case, at arbitrary fixed polarization,
optimal cooling is again achieved for the resonant regime
ω ¼ εz. A finite polarization always reduces the minimum
occupation as n̄min decreases as a function of p independent
of the ratio εz=ω [Fig. 3(b)]. To discuss this behavior we

consider the analytic high-voltage approximation for the
phonon occupation given by

n≃ γ−lr þ nBðωÞðγll þ γrrÞ
γþlr − γ−lr þ γll þ γrr

; ð8Þ

where we set the short notation γαα ¼ γþαα − γ−αα. From
Eq. (8) we observe that the diagonal lead processes γαα,
which are not present for p ¼ 1, have the effect of
thermalizing the oscillator. As an example, assuming a
strong asymmetry of the leads, as for instance Γl ≃ 0
(Γr ≃ 0), we have γ�lr ¼ 0: the dot is in contact only with
one left (right) lead and the oscillator is always at the
thermal equilibrium. Such processes compete with the
cooling processes γþlr leading to an increase of the minimum
phonon occupation.
Clearly, taking into account the intrinsic damping of

the mechanical oscillator also increases the minimum
phonon occupation. Remarkably, a phonon occupation of
n̄min ≃ 0.5 is still achieved for Q≃ 104, λ=ω ¼ 0.05, and
polarizations p > 0.48 [Fig. 3(b)]. The minimal phonon
occupation reduces to n̄min ¼ 0.2 at p ¼ 1. An occupation
of n̄min ≃ 0.5 is also obtained for Q≃ 105 and p > 0.3
(n̄min ¼ 0.05 at p ¼ 1). Motivated by a recent experiment
that reported large spin-orbit interaction coupling ΔSO [12],
one can also consider coupling constants of order
λ=ω ¼ 0.2, which implies a strong reduction of the polari-
zation required for cooling. As an example, n̄min ≃ 0.5 for
Q≃ 104 and p > 0.3. Therefore, we conclude that even for
modest polarizations, which appears feasible in promising

FIG. 2 (color online). Phonon occupation as function of the bias
voltage V and ε0. The parameters are p ¼ 1 (fully polarized),
Γ−
l ¼ Γþ

r ¼ 0.2ω, and T ¼ 10ω. White corresponds to nBðωÞ.
(a) Vanishing external damping γ0¼0, εz¼10T, μr¼ε0−eV, and
μl ¼ ε0. The black dashed line indicates the transition from
cooling to heating (see text). Inset: schematic behavior of the
relevant spin-flip processes in the region of cooling (left) and
heating (right). (b) Resonant regime εz ¼ ω with γ0 ¼ 10−5ω,
λ=ω ¼ 0.01, and μl;r ¼ ε0 � eV=2. Inset, left: the minimum
occupation n̄min as a function of the spin-vibration coupling
constant λ for different quality factors. Inset, right: schematic
behavior of the energy levels and of the inelastic resonant slip-flip
tunneling.

FIG. 3 (color online). Minimum of the phonon occupation
n̄min for an intrinsic damping of Q ¼ 104 and λ=ω ¼ 0.05.
The temperature is T ¼ 10ω and Γl ¼ Γr ¼ 0.2ω. (a) Minimal
occupation as function of εz=ω for different polarizations. The
inset (log scale for y axis) shows that maximal cooling is achieved
at εz ¼ ω. (b) Minimal phonon occupation as a function of
polarization for different energy separations.
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experiments with CNTQDs [20,49,50], quantum ground-
state cooling is achievable.
Conclusions.—In summary, we discussed a suspended

CNTQD forming a nanomechanical spin valve with a direct
coupling between the dot spin and the flexural modes
showing that ground-state cooling is achievable with
moderated spin-current polarization.
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