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The emergence of the nematic order and fluctuations has been discussed as a central issue in Fe-based
superconductors. To clarify the origin of the nematicity, we focus on the shear modulus C66 and the Raman
quadrupole susceptibility χRaman

x2−y2 . Because of the Aslamazov-Larkin vertex correction, the nematic-type
orbital fluctuations are induced, and they enhance both 1=C66 and χRaman

x2−y2 strongly. However, χRaman
x2−y2

remains finite even at the structure transition temperature TS, because of the absence of the band Jahn-
Teller effect and the Pauli (intraband) contribution, as proved in terms of the linear response theory. The
present study clarifies that the origin of the nematicity in Fe-based superconductors is the nematic orbital
order and fluctuations.

DOI: 10.1103/PhysRevLett.113.047001 PACS numbers: 74.70.Xa, 74.25.Ld, 74.25.nd, 74.40.Kb

In Fe-based superconductors, the nematic order and
fluctuations attract great attention as one of the essential
properties of the electronic states. A schematic phase
diagram of BaFe2As2 as a function of carrier doping y is
shown in Fig. 1: For y > 0 (electron doping), the non-
magnetic orthorhombic (C2) phase transition occurs at TS,
and the antiferromagnetic spin order is realized at TN

(≲TS) in the C2 phase. In BaðFe1−xCoxÞ2As2 (y ¼ x),
both the structural and magnetic quantum critical points
(QCPs) are very close, and strong magnetic fluctuations
are observed near the QCPs by nuclear magnetic reso-
nance (NMR) [1]. In addition, strong nematic susceptibil-
ity that couples to the C2 structure deformation had been
observed via the softening of shear modulus C66 [2–6] and
in-plane anisotropy of resistivity [7]. Similar softening of
C66 is also observed in ðBa1−xKxÞFe2As2 (y ¼ −x=2; hole
doping) [5] and Fe(Se,Te) (y ¼ 0) [8]. Interestingly, in
BaðFe1−xNixÞ2As2 (y ¼ 2x), magnetic QCP and structural
QCP are well separated, and quantum ciriticalities are
realized at both points [9].
Then, a natural question is, what is the “nematic order

parameter” that would be closely related to the pairing
mechanism? Up to now, both the spin-nematic mechanism
[2] and ferro-orbital order mechanism [10–13] had been
proposed, and the softening of C66 can be fitted by both
mechanisms [14,15]. The former predicts that the spin-
nematic order hsi · siþx̂i ≠ 0 occurs above TN when the
magnetic order hsii is suppressed by the J1-J2 frustration.
As for the latter scenario, it was shown that the nematic
orbital order nxz ≠ nyz is induced by spin fluctuations, due
to strong spin-orbital mode coupling given by the vertex
correction (VC) [13,16,17]. The large d-orbital level
splitting Eyz − Exz ∼ 60 meV in the C2 phase [18,19]
may be too large to be produced by spin-nematic order
via spin-lattice coupling.

Recently observed large quadrupole susceptibility χRaman
x2−y2

by electron Raman spectroscopy [20,21] presents a direct
evidence of the strong orbital fluctuations. Although this
result favors the orbital-nematic scenario, the observed
enhancement of χRaman

x2−y2 is apparently smaller than the orbital

susceptibility extracted from C66. For example, χRaman
x2−y2

remains finite at T ¼ TS, although C−1
66 diverges at TS.

Therefore, it should be verified whether or not both C66 and
χRaman
x2−y2 can be explained based on the orbital-nematic

scenario.
In this Letter, we analyze both C66 and χRaman

x2−y2 , both of

which are key experiments to uncover the nematic order
parameter. It is found that bothC66 and χRaman

x2−y2 are enhanced
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FIG. 1 (color online). (a) Schematic phase diagram of Fe-based
superconductors. (b) Fermi surfaces for y ¼ 0. The weight of the
dxz orbital is stressed by green circles. (c) Relation λphoton ≫ λac.
(d) Particle-hole excitation continuum.
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by the orbital fluctuations due to Aslamazov-Larkin-type
(AL) VC. However, χRaman

x2−y2 is less singular since the band

Jahn-Teller (JT) effect and the Pauli (intraband) quadrupole
susceptibilities do not contribute to χRaman

x2−y2 . Since both C66

and χRaman
x2−y2 are explained satisfactorily, the orbital-nematic

scenario is essential for many Fe-based superconductors.
As for the pairing mechanism, at present, both the spin-

fluctuation-mediated s�-wave state [22–24] and the orbital-
fluctuation-mediated sþþ-wave state [25,26] have been
discussed. When both fluctuations coexist, the nodal s-
wave state can be realized [27]. The sþþ-wave state is
consistent with the robustness of Tc against impurities
[28,29] and the broad hump structure in the inelastic
neutron scattering [30,31]. The self-consistent VC method
[13,26] predicts the developments of ferro- and antiferro-
orbital fluctuations, and the freezing of the latter fluctua-
tions would explain the nematic order at T� ∼ 200 K
(≫ TS) [32,33].
First, we discuss the susceptibility at k ≈ 0 with respect

to the quadrupole order parameter Ôx2−y2 ≡ nxz − nyz in the
Hubbard model. For U ¼ U0 þ 2J, it is approximately
given as [13,16]

χx2−y2ðkÞ ¼ 2ΦðkÞ=½1 − ðU − 5JÞΦðkÞ�; ð1Þ

where k ¼ ðk;ωÞ, and ΦðkÞ≡ χð0ÞðkÞ þ XðkÞ is the intra-
orbital (within dxz orbital) irreducible susceptibility: χð0ÞðkÞ
is the noninteracting susceptibility and XðkÞ is the VC for
the charge channel. The nematic orbital order nxz ≠ nyz
occurs when the charge Stoner factor αc ¼ ðU − 5JÞΦð0Þ
reaches unity, which is realized near the magnetic QCP
since the AL-VC is proportional to the square of the
magnetic correlation length [13,16,17].
Next, we discuss the “total” quadrupole susceptibility in

real systems, by including the realistic quadrupole
interaction due to the acoustic phonon for the ortho-
rhombic distortion. According to Ref. [34], it is given as
−gacðkÞÔx2−y2ðkÞÔx2−y2ð−kÞ, where Ôx2−y2ðkÞ is the quad-
rupole operator, and gacðkÞ¼gðvacjk=ωjÞ2=½ðvacjk=ωjÞ2−1�
is the phonon propagator multiplied by the coupling
constants. vac is the phonon velocity. Since the Migdal’s
theorem tells us that the effect of g on the irreducible
susceptibility is negligible, the total susceptibility is

χtotx2−y2ðkÞ ¼ χx2−y2ðkÞ=½1 − gacðkÞχx2−y2ðkÞ�: ð2Þ

Now, we discuss the acoustic and optical responses
based on the total susceptibility (2), by noting that any
susceptibilities in metals are discontinuous at ω ¼ jkj ¼ 0.
Since the elastic constant is measured under the static
(ω ¼ 0) strain with long wavelength (jkj → 0), C66 is
given as

C−1
66 ∼ 1þ lim

k→0
gacðk; 0Þχtotx2−y2ðk; 0Þ ¼

1

1 − gχk-lim
; ð3Þ

where χk-lim ≡ limk→0χx2−y2ðk; 0Þ is called the k-limit, and
the relation gacðkÞ ¼ g for ω ¼ 0 is taken into account. The
structure transition occurs when C−1

66 diverges. When the

AL-VC is negligible, χk-lim is as small as χð0Þk-lim. Even in this
case, C−1

66 can diverge when g is very large, which is known
as the band JT effect. However, the band JT mechanism
cannot explain the strong enhancement of χRaman

x2−y2 , as wewill

clarify later. In fact, the fitting of experimental data in this
Letter indicates that the softening of C66 is mainly given by

the AL-VC: The relation 1=g ∼ χk-lim ≫ χð0Þk-lim is satisfied in
Fe-based superconductors.
Next, we derive the optical response in the dc limit,

measured by using the low-energy photon with k ¼
ðk;ω ¼ cjkjÞ and ω → 0. Considering that the photon
velocity c is much faster than the Fermi velocity vF and
vac, it is given as

χRaman
x2−y2 ∼ lim

ω→0
χtotx2−y2ð0;ωÞ ¼ χω-lim; ð4Þ

where χω-lim ≡ limω→0χx2−y2ð0;ωÞ is called the ω-limit
[35,36]. Since gacðkÞ is zero for jω=kj ¼ c, the band JT
effect does not contribute to the Raman susceptibility. The
physical explanation is that the acoustic phonons cannot be
excited by photons because of the mismatch of the wave-
lengths λphoton ≫ λac for the same ω as shown in Fig. 1(c).
Also, since c ≫ vF, low-energy photon cannot induce the
intraband particle-hole excitation as understood from the
location of the particle-hole continuum shown in Fig. 1(d).
This fact leads to the relationship “χω-lim is smaller than
χk-lim,” as we discuss mathematically later. For the charge
quadrupole susceptibility, this relationship holds even if the
quasiparticle lifetime is finite due to impurity scattering;
see the Supplemental Material [37]. Therefore, χRaman

x2−y2
remains finite at T ∼ TS although C−1

66 diverges at TS,
consistently with experiments [20,21].
Hereafter, we perform the numerical calculation of the

quadrupole susceptibility in the five-orbital model. The unit
of energy is eVunless otherwise noted. First, we discuss the
k-limit and ω-limit of the bare bubble made of two dxz
orbital Green functions. They are connected by the follow-
ing relation:

χð0Þk-lim ¼ χð0Þω-lim þ
Xband
α

X
k

�
−
∂fαk
∂ϵαk

�
fzαkg2; ð5Þ

where zαk ¼ jhxz; kjα; kij2 ≤ 1 is the weight of the dxz
orbital on band α, and fαk ¼ fexp½ðϵαk − μÞ=T� þ 1g−1. In
Eq. (5), χð0Þω-lim ¼ P

band
α≠β

P
kðfαk − fβkÞ=ðϵβk − ϵαkÞzαkzβk is

given by only the interband (α ≠ β) contribution, which

is called the Van Vleck term. Therefore, χð0Þk-lim is always

PRL 113, 047001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
25 JULY 2014

047001-2



larger than χð0Þω-lim due to the intraband contribution given by
the second term in Eq. (5), called the Pauli term. We obtain

χð0Þω-lim ≈ 0.25 and χð0Þk-lim ≈ 0.45 in the present model.
Next, we analyze AL-VC in detail, since it is the main

driving force of the orbital fluctuations. The analytic
expression of the AL term is given in Refs. [13,16]. To
simplify the discussion, we consider the intraorbital (within
dxz orbital) AL term. Then, XkðωÞ-lim is approximately
given as

XkðωÞ-lim ¼ 3T
X
q

jΛkðωÞ-lim
q j2Vsðq; 0Þ2; ð6Þ

where Λω-lim
q ≡ limω→0Λqð0;ωÞ and Λk-lim

q ≡ limk→0Λqðk;0Þ
at q ¼ ðq; 0Þ: Λqðk; 0Þ is the three-point vertex made of
three Green functions [13]. Also, VsðqÞ ¼ U þ U2χsðqÞ,
where χsðqÞ is the spin susceptibility for the dxz orbital.
Here, we assume the following Millis-Monien-Pines form
of χsðqÞ [38]:

χsðqÞ ¼ cξ2½1þ ξ2ðq − QÞ2 þ jΩmj=ωsf �−1; ð7Þ

where Q ¼ ð0;�πÞ, ξ2 ¼ l=ðT − θÞ is the square of the
spin correlation length, and ωsf ¼ l0ξ−2 is the spin-
fluctuation energy scale. Quantitatively speaking,
XkðωÞ-lim given by Eq. (6) is underestimated since nonzero
Matsubara terms are dropped. However, in the classical
region ωsf < 2πT, which is realized in optimally doped
BaðFe;CoÞ2As2 [39], χsðq;ωlÞ for l ≠ 0 is negligibly
small. In this case, we can safely use Eq. (6).

According to Eqs. (6) and (7), we obtain XkðωÞ-lim ∼

TfΛkðωÞ-lim
Q g2ξ2 for two-dimensional systems. Λk-lim

q and
Λω-lim
q are connected by the following relation:

Λk-lim
q ¼ Λω-lim

q þ
X
α;γ

X
k

�
−
∂fαk
∂ϵαk

� fzαkg2zγk−q
ϵγk−q − ϵαk

; ð8Þ

where Λω-lim
q is the interband Van Vleck term [40]. For

q ≈ Q, Λk-lim
q increases strongly at low T, because of the

intraband Pauli term in the second term of Eq. (8). Its main
contribution is given by α ¼ α1;2 and γ ¼ β2 in Fig. 1(b).
Both the Pauli and Van Vleck terms are negative in the
present model. Therefore, the relationship Xk-lim > Xω-lim is
satisfied.
Figure 2(a) shows the temperature dependence of

Xk-lim=T given by Eq. (6), by using the static RPA spin
susceptibility χsðq; 0Þ obtained at T ¼ 0.01. In this calcu-
lation, ξ2 ∝ ð1 − αsÞ−1 is fixed, where αs ¼ Uχð0ÞðQ; 0Þ is
the spin Stoner factor. Thus, we obtain the relationship
Xk-lim=T ∼ T−0.5ξ2, in which the factor T−0.5 originates
from the strong T dependence of jΛk-lim

Q j2. We also show the
temperature dependence of Xω-lim=T in Fig. 2(b): The

relation Xω-lim=T ∼ ðb − TÞξ2 is realized due to the T
dependence of jΛω-lim

Q j2 [40]. Therefore, the relationship
Xk-lim > Xω-lim is confirmed by the present calculation.
Here, we perform the fitting of experimental data. To

reduce the number of fitting parameters, we put χx2−y2 ≈ 2Φ
by assuming ðU − 5JÞ ∼ 0, which would be justified since
the relation J=U ∼ 0.15 is predicted by the first principle
study [41]. Also, we put Φ ≈ X by assuming that X ≫ χð0Þ.
Then, Eqs. (3) and (4) are simplified as

C−1
66 ∝ 1=ð1 − 2gXk-limÞ; ð9Þ

χRaman
x2−y2 ∝ Xω-lim; ð10Þ

where Xk-lim ≡ a0Taξ2 and Xω-lim ≡ b0ðb − TÞTξ2:
According to Fig. 2, a ∼ 0.5 and b ∼ 0.1 for T > 0.01.
First, we fit the data of Cexp

66 , which is normalized by
the shear modulus due to phonon anharmonicity (33%
Co-doped BaFe2As2 data) given in Ref. [5]. We put
a ¼ 0.5, and the remaining fitting parameters are
h ¼ 2ga0l and θ. Figure 3(a) shows the fitting result for
BaðFe1−xCoxÞ2As2: The “dotted line C66” is the fitting
result of Cexp

66 under the constraint C66 ¼ 0 at T ¼ TS. We
fix h ¼ 2.16 for all x, and change θ from 116 to −30 K.
The “broken line C0

66” is the fitting for x ¼ 0–0.09 without
the constraint, by using h ¼ 2.67. Thus, both fitting
methods can fit the T and x dependences of Cexp

66 very
well by choosing only θðxÞ with a fixed h. Figure 3(b)
shows the obtained θðxÞ by C66 fitting (x ¼ 0–0.043) and
by C0

66 fitting (x ¼ 0.06, 0.09), as explained above. The
obtained θðxÞ is very close to θNMR given by the Curie-
Weiss fitting of 1=T1T [1], which manifests the importance
of the AL-VC. Also, θRaman is given by the Raman
spectroscopy [20].
In Fig. 3(c), we show Xk-lim obtained by the fitting of

Cexp
66 for BaðFe1−xCoxÞ2As2 at x ¼ 0 and 0.043, We also

show Xω-lim ∼ Xk-limðb − TÞT1−a according to the numeri-
cal result in Fig. 2, by putting b ¼ 1400 K. In Fig. 3(c), all

ω

FIG. 2 (color online). (a) Xk-lim=T and (b) Xω-lim=T as functions

of T. Their T dependences originate from jΛkðωÞ-lim
Q j2 since ξ2 ∝

1=ð1 − αsÞ is fixed.
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of the data are normalized as unity at 300 K. Then, the
relation χRaman

x2−y2 ∼ Xω-lim is well satisfied, as expected
from Eq. (10). In addition, the relation Xω-lim ≪ Xk-lim
holds for T ∼ TS, consistent with the report in
BaðFe1−xCoxÞ2As2 [20].
Figures 4(a) and 4(b) show the fitting results for

ðBa1−xKxÞFe2As2 for x ¼ 0–0.24 (a ¼ 0.5; h ¼ 2.16 for
C66 and h ¼ 2.67 for C0

66) and x ¼ 0.3–0.6 (a ¼ 0.58; h ¼
4.98 for C0

66), respectively. In the present theory, we can
explain the existence of inflection points of C66 in the
overdoped region (without structure transition) reported
experimentally [5], shown by large blue circles. The
inflection point originates from the factor Ta in
Xk-lim ∝ Taξ2. The fitting of overdoped data could be
improved by considering the deviation from the relation
Xk-lim ∝ Taξ2 at low T, as recognized in Fig. 2(a). In
addition, for x≳ 0.5, experimental pseudogap behavior of
1=T1Tð∝ ξ2Þ below ∼100 K [42] would also be related to
the inflection point of C66.
In the present theory, we can fit Cexp

66 very well for both
overdoped and underdoped regions in Ba1−xKxFe2As2.
However, a different set of parameters should be used in
each region: This fact indicates that the orthorhombic phase
and superconducting phase are separated by the first-order
transition. In fact, the T2-like resistivity at the optimum

doping x ∼ 0.3 indicates the absence of the nematic orbital
QCP in this compound. We also note that the change in the
topology of the electron pockets, called the Lifshitz tran-
sition, occurs in Ba1−xKxFe2As2 near the optimal doping.
In this Letter, we showed that Raman susceptibility at

ω ¼ 0 is enlarged by the AL-VC. The present theory
predicts that the ω dependence of the ac Raman suscep-
tibility follows χRaman

x2−y2 ðωÞ ∼ Xð0;ωÞ ∼ ð1 − iω=ΓÞ−1, and Γ
is approximately ∼ωsf. However, Γ could be modified by
the ω dependence of jΛqðkÞj2.
In summary, we presented a unified explanation for the

softening of C66 and enhancement of χRaman
x2−y2 based on the

five-orbital model. Both 1=C66 and χRaman
x2−y2 are enhanced by

the nematic-type orbital fluctuations induced by the AL-VC.
However, χRaman

x2−y2 remains finite even at the structure
transition temperature TS, because of the absence of the
band JT effect and the Pauli (intraband) contribution. The
present study clarified that the origin of the nematicity,
which is a central issue in Fe-based superconductors, is the
nematic orbital order and fluctuations.
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FIG. 3 (color online). (a) Fittings of the dataCexp
66 normalized by

the 33% Co-doped BaFe2As2 data in Ref. [5], shown by broad
red lines. The dotted lines C66 are the fitting result under the
constraint C66 ¼ 0 at T ¼ TS, and the broken lines C0

66 are the
fitting without constraint. (b) The Weiss temperature θ given by
the present fitting. θNMR is the Weiss temperature of 1=T1T [1],
and θRaman is given by the Raman spectroscopy [20]. (c) Xk-lim
and Xω-lim given by the fitting of C66. Experimental data of
χRaman
x2−y2 are shown by red circles [20].

(b)

(a)

(x = 30%–60%)

(x = 0%–24%)

FIG. 4 (color online). Fittings of shear modulus for (a) under-
doped and (b) overdoped ðBa1−xKxÞFe2As2. Experimental data
Cexp
66 are shown by broad red lines [5].
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