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Statistical analysis of the eigenfunctions of the Anderson tight-binding model with on-site disorder on
regular random graphs strongly suggests that the extended states are multifractal at any finite disorder. The
spectrum of fractal dimensions fðαÞ defined in Eq. (3) remains positive for α noticeably far from 1 even
when the disorder is several times weaker than the one which leads to the Anderson localization; i.e., the
ergodicity can be reached only in the absence of disorder. The one-particle multifractality on the Bethe
lattice signals on a possible inapplicability of the equipartition law to a generic many-body quantum system
as long as it remains isolated.
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Introduction.—Anderson localization (AL) [1,2], in its
broad sense, is one of the central paradigms of quantum
theory. Diffusion, which is a generic asymptotic behavior
of classical random walks [3], is inhibited in quantum case
and under certain conditions it ceases to exist [2]. This
concerns quantum transport of noninteracting particles
subject to quenched disorder as well as transport and
relaxation in many-body systems. In the latter case the
many-body localization (MBL) [4] can be thought of as
localization in the Fock space of Slater determinants,
which play the role of lattice sites in a disordered tight-
binding model. In contrast to a d-dimensional lattice, the
structure of Fock space is hierarchical [5]: a two-body
interaction couples a one-particle excitation with three
one-particle excitations, which in turn are coupled with
five-particle excitations, etc. This structure resembles a
random regular graph (RRG) - a finite size Bethe lattice
(BL) without boundary. Interest to the problem of single
particle AL on the BL [6,7] has recently revived [8–12]
largely in connection with MBL. It is a good approxima-
tion to consider hierarchical lattices as trees where any
pair of sites is connected by only one path and loops are
absent. Accordingly the sites in resonance with each other
are much sparser than in ordinary d > 1-dimensional
lattices. As a result even the extended wave functions
can occupy zero fraction of the BL, i.e., be nonergodic.
The nonergodic extended states on three-dimensional
lattices where loops are abundant are commonly believed
[13–16] to exist but only at the critical point of the AL
transition.
In this paper we analyze the eigenstates of the Anderson

model on RRG with connectivity K þ 1 (K is commonly

used to refer to the branching of the corresponding BL)
and N sites,

H ¼ −
X
hiji

ðc†i cj þ h.c.Þ þ
X
i

εic
†
i ci; ð1Þ

where εi ∈ ½−W=2;W=2�. A normalized wave function
ψðiÞ (i ¼ 1; :::; N) can be characterized by the moments
Iq ¼

P
ijψðiÞj2q ∝ N−τðqÞ [13] (I1 ¼ 1 for the normaliza-

tion). One can define the ergodicity as the convergence in
the limit N → ∞ of the real space averaged jψðiÞj2q (equal
to Iq=N) to its ensemble average value hjψðiÞj2qi ¼
hIqi=N. This happens when the fluctuations of jψðiÞj2
are relatively weak and hjψðiÞj2qi ¼ aðqÞhjψðiÞj2iq with
aðqÞ ¼ OðN0Þ. Since ψðiÞ is normalized hjψðiÞj2i ¼ N−1

and thus Iq ¼ NhjψðiÞj2qi ¼ aðqÞN1−q, i.e., τðqÞ ¼ q − 1.
The latter condition turns out to be both necessary and
sufficient for the convergence of Iq to hIqi (see the
Supplemental Material [17] for the discussion).
Deviations of τðqÞ from q − 1 are signatures of the non-
ergodic state. If the ratio Dq ¼ τðqÞ=ðq − 1Þ depends on q,
the wave function ψðiÞ is called multifractal. It is custom-
ary to characterize ψðiÞ by the spectrum of fractal dimen-
sions (SFD) fðαÞ related to τðqÞ by the Legendre
transform: τðqÞ ¼ qα − fðαÞ with αðqÞ being a solution
to f0ðαÞ ¼ q (see the Supplemental Material [17]). Such a
relationship follows from the definition of fðαÞ, Eq. (3),
and the saddle-point approximation in evaluating of the
moments Iq at large lnN.
In this Letter we develop a method of extracting

SFD fðαÞ from the numerical diagonalization of the
Hamiltonian Eq. (1) on the RRG with finite number of
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sizes N and branching K ¼ 2. The multifractality is
overshadowed by the fast oscillations ϕoscðiÞ of ψðiÞ which
should be separated from the smooth envelope ψ enðiÞ,

ψðiÞ ¼ ψ enðiÞϕoscðiÞ: ð2Þ
Below we describe how to separate the statistics of ψ enðiÞ
and demonstrate that at all strengths W of the on-site
disorder the distribution function (DF) of x ¼ Njψ enðiÞj2 is
consistent with the multifractal ansatz [14,16]; i.e., it can be
expressed through SFD fðαÞ as

PðxÞ ¼ A
x
NfðαÞ−1; αðxÞ ¼ 1 − ln x= lnN; ð3Þ

where A ∼OðN0Þ is the normalization constant. The SFD
fðαÞ in Eq. (3) is known [13,16] to be a convex function
equal to 1 at its maximum, fmax ¼ fðα0Þ ¼ 1. For ergodic
states fðαÞ ¼ −∞ unless α ¼ 1 where fð1Þ ¼ 1, while a
finite support 0 < αmin < α < αmax where fðαÞ > 0 is a
signature of multifractality (nonergodicity).
We found that with decreasing disorder fðαÞ evolves

from almost triangular shape in the insulator to a steep
parabolic shape concentrated near α ¼ 1 (see Fig. 1).
Fractal behavior of quantum dynamics on the disordered

BL have been discussed previously. Transmission from the
root to a given surface point of the Cayley tree turns out
to be multifractal [12]. This surface multifractality of the
extended states does not necessarily mean that bulk of
the BL is multifractal: it is known, e.g., that in two
dimensions the bulk multifractality is much weaker than
the surface one [16]. Our analysis of the results of exact
numerical diagonalization of the Hamiltonian (1) on the
RRG demonstrated that the extended wave functions are
multifractal even in the bulk of the BL. Hopefully the tools
developed in [8,9,18] might lead to a proof of the multi-
fractality in the whole delocalized region, a possibility that
we plan to explore in future work.

Authors of Ref. [11] analyzed numerically the statistics
of the spectra and by population dynamics the distribution
of the Green functions of the model (1) and conjectured a
transition between extended-ergodic and extended non-
ergodic phases in addition to the Anderson transition.
Contrarily, we do not see any evidence of the second
transition and believe that the entire extended phase is
nonergodic.
Numerics on the BL: rectification and extrapolation.—

With the exception of the deeply localized states discussed
below, analytical methods to address the problem of wave
function statistics on BL are yet to be developed. One can
try to access these statistics numerically by diagonalization
of the Anderson model Eq. (1) on a RRG. The first
challenge along this route is the necessity to extract the
statistics of the smooth envelope ψ enðiÞ of the wave
function ψðiÞ, Eq. (2). The short-range oscillations of
ϕoscðiÞ have nothing to do with AL but dominate the
numerically obtained DF of jψðiÞj2 at small jψðiÞj2. This
tail of the DF thus reflects the density of the nodes of
ϕoscðiÞ rather than the probability for jψ enðiÞj2 to be small.
Since the scales of spatial dependencies of ψ enðiÞ

and ϕoscðiÞ are so different, it is natural to assume that
these two functions are statistically independent and
jϕoscj2 is characterized by the Porter-Thomas DF of the
Gaussian orthogonal ensemble (GOE) [19] PGOEðjϕoscj2Þ ¼
ð ffiffiffiffiffiffi

2π
p jϕoscjÞ−1 exp ð−jϕoscj2=2Þ. Under these assumptions
~α ¼ 1 − lnðNjψ j2Þ= lnN, which is evaluated numerically, is
a sum of two statistically independent random variables:
~α ¼ αðxÞ þ αosc, where αðxÞ is given by Eq. (3) and αosc ¼
− ln jϕoscj2= lnN. The DF of ~α is thus a convolution of the
DF pðαÞ ¼ PðxðαÞÞxðαÞ lnN of αðxÞ with ~PGOEðαoscÞ ¼
lnNð2πNαoscÞ−1=2 expðN−αosc=2Þ; i.e., PðxÞ determined by
(3) can be obtained (“rectified”) from the DF of ~α and
by the Laplace transform method (see the Supplemental
Material [17] for details).
Another, even bigger challenge is that Eq. (3) is expected

to hold only in the limit of a sufficiently large graph; i.e.
fðαÞ can be determined only from the limit of fðα; NÞ ¼
fðαÞ þ δNfðαÞ at lnN → ∞, where

fðα; NÞ ¼ 2 − αþ lnPðxÞ= lnN; x ¼ N1−α: ð4Þ
The biggest number of sites accessible to us was

N ¼ 32; 000. Increasing further N does not buy much,
as the computation time increases as N3 while the finite-
size correction δNfðαÞ is small only as 1= lnN. However,
we found a bright side of the slowness of the convergence:
in the broad interval of α the correction δNfðαÞ turns out to
be linear in 1= lnN to a surprisingly high accuracy. This
allowed us to make a reliable linear extrapolation in 1= lnN
well beyond the numerical data.
Fixed points in the N-dependence of fðα; NÞ.—We

numerically diagonalized the Hamiltonian Eq. (1) for the
regular graph with connectivity K þ 1 ¼ 3 (which does not
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FIG. 1 (color online). Numerical results for fðαÞ on the RRG
with the connectivity K þ 1 ¼ 3 after linear extrapolation
fðα; NÞ ¼ fextðαÞ þ c= lnN to 1= lnN → 0 for different values
of disorder W. The dashed straight lines show the slope k < 1=2
for the localized (W ¼ 22.5) and k ¼ 1=2 for the critical
(W ¼ 17.5) states.
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contain boundary sites) extracting about 2% of the states
around the center E ¼ 0 of the spectrum, and evaluated
fðα; NÞ for N ¼ 32; 16; 8; 4; 2 × 103 at several disorder
strengths W, both above the Anderson transition at Wc ¼
17.5 and below it, down to W ¼ 5. Plots of fðαÞ for W ¼
10 and W ¼ 5 are shown in Fig. 2 and Fig. 3.
An important observation is the existence of two fixed

pointsαþ andα− (shown by arrows): fðαþ; NÞ and fðα−; NÞ
are essentially N independent. This rules out the possibility
of fðαÞ evolving with further increase of N into a sharp
parabola at α ¼ 1 (dashed line in Fig. 1). In addition to that
we verified to a high degree of accuracy that δNfðαÞ is linear
in 1= lnN, at least for α− < α < αþ. The insert of Fig. 2
demonstrates that the values of fðα ¼ 1; NÞ being plotted as
a function of 1= lnN for N ¼ 32; 16; 8; 4; 2 × 103 (red
points) form an almost ideal straight line which can be
prolonged down to 1= lnN ¼ 0. This is howwe obtained the
extrapolated SFD fextðαÞ. It was already mentioned that
the maximal value of fðαÞ in Eq. (3) should be 1. It is not the
case for fðα; NÞ as one can see from Figs. 2,3. After
extrapolation, however, the maxima of fextðαÞ turn out to
be much closer to 1: fextmax ¼ 0.99; 1.03; 1.01; 1.00 for
W ¼ 5; 10; 17.5; 22.5, respectively. We just conclude that
the extrapolation passed an important and nontrivial test for
consistence.
Verification of the symmetry of fðαÞ.—Another impor-

tant observation providing us with the additional confidence
in the validity of the extrapolation is the symmetry of SFD
and DF,

fð1þ αÞ ¼ fð1 − αÞ þ α; ð5Þ
PðxÞ ¼ x−3Pðx−1Þ: ð6Þ

One can use Eq. (3) to check that Eqs. (5) and (6) follow
from each other. Log-normal distribution found for weakly
multifractal states in two-dimensional disordered systems
[20] is one of the examples of this symmetry. A relation
similar to Eq. (6) was proven for the DF of the local density
of states ρði; εÞ in a one-dimensional chain [21] and a variety
of systems (e.g. short and long disordered wires, two-
dimensional and three-dimensional disordered systems)
described by the nonlinear sigma model [22,23]. The precise
conditions of validity of Eq. (6) for the individual eigen-
functions are yet to be formulated. It does not hold for the
localized eigenstates, while for weakly multifractal extended
states in two-dimensional systems it is valid [20]. A vast
numerical evidence of the validity of Eq. (5) for the multi-
fractal states at the Anderson transition point in two-dimen-
sional and three-dimensional systems was reported [16]. In
the insert of Fig. 3 we present the separate plots of fextð1þ
αÞ and fextð1 − αÞ þ α for the weakest disorder we studied,
W ¼ 5 (deep in the region of extended states, the fractal
dimensions D1 andD2 are very close to 1). One can see that
the two curves are indistinguishable in the interval
−0.4 < α < 0.4, while fð1þ α; N ¼ 16 × 103Þ and fð1 −
α; N ¼ 16 × 103Þ þ α differ noticeably.
In the localized regime W > Wc ¼ 17.5 and at the

critical point W ¼ Wc the shape of the SFD is approx-
imately triangular (see Fig. 1),

fextðαÞ ¼ kαθð1 − kαÞ; θðzÞ ¼
�
1 if z > 0

0 if z < 0.
ð7Þ

The slope k depends on the disorder k ¼ kðWÞ with kðWcÞ
is very close to 1=2. Note, that the only linear fðαÞ allowed
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FIG. 2 (color online). N dependence of fðα; NÞ on the RRG
with K ¼ 2 for N ¼ 2; 4; 8; 16 × 103 (from green to
blue in ascending order) in the extended phase W ¼ 10. The
fextðαÞ obtained by linear extrapolation of fðα; NÞ to 1= ln
N → 0 is shown by a thin red line. The maximal value
fmax ≈ 1.03 of fextðαÞ is very close to the theoretical expectation
fmax ¼ 1. We also show the fractal dimensions D2 and D1 ¼
limq→1þDq corresponding to fextðαÞ. The plots for different N
show apparent fixed points at α ≈ 0.5 and α ≈ 1.6 indicated
by arrows. Similar fixed points with W-dependent positions are
seen at any strength of disorder studied. This rules out that
fðα; NÞ approaches at lnN → ∞ the ergodic limit fðαÞ ¼ 1
at α ¼ 1, fðαÞ ¼ −∞ otherwise. In the insert: the linear extrapo-
lation of fðα; NÞ for α ¼ 1.0; the red points show fðα ¼ 1.0; NÞ
at N ¼ 2; 4; 8; 16; 32 × 103.
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FIG. 3 (color online). fextðαÞ obtained by linear extrapolation
(see Fig. 2) of fðα; NÞ to 1= lnN → 0 (red) and fðα; NÞ for
N ¼ 2; 4; 8; 16 × 103 at disorder strength W ¼ 5. The fixed
points are shown by arrows. In the insert: verification of the
symmetry Eq. (5) for the extrapolated fextðαÞ (coinciding blue
and red thick curves), and for fðα; NÞ at N ¼ 16 × 103 (distinctly
different thin blue and red curves).
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by Eq. (5) is the one with k ¼ 1=2. Thus one concludes that
the critical states with not very small amplitude of wave
function (not very large α) forW ¼ Wc obey Eq. (5). At the
same time, the most abundant critical states around the
maximum value of fðαÞ reached at α ¼ α0 ≈ 2.3 clearly
violate the symmetry Eq. (5). Indeed fð1 − αÞ is defined
only for α < 1 and thus according to Eq. (5) fð1þ αÞ
should make no sense for α > 1. In the localized regime we
found that α0 increases with disorder, while kðWÞ ≈ α−10
decreases below 1=2. This is in a clear contradiction
with Eq. (5).
Power-law DF for strongly localized states on BL.—Our

numeric-based conclusions on the regime of strong
localization W ≫ Wc fully agree with the analytical
results which follow from the locator expansion [6] (also
see the Supplemental Material [17]). In the shortest
path approximation [24,25] one obtains ψ ð0ÞðiÞ ¼Q

j∈p0;i
ðε0 − εiÞ−1, where ψ ð0ÞðiÞ is the eigenfunction of

the Hamiltonian Eq. (1) on BL which at W ¼ ∞ is located
on the site 0, and p0;i is the shortest path connecting sites
0 and i. One can show that within this approximation the
DF PðxÞ can be represented as

PðxÞ ¼ Ið1; 0Þ − N1−κIð1 −m; κÞ: ð8Þ

Here m ¼ lnN= lnK is the BL radius, κ ¼ lnðW=2Þ= lnK,
and

Iðp; qÞ ¼ 1ffiffiffiffiffiffiffiffi
Nx3

p
Z
B

ds
4πi

spðxN2q−1Þs=2
s − Kκðs−1Þþ1

: ð9Þ

The contour B ∈ ðr − i∞; rþ i∞Þ is parallel to the imagi-
nary axis and crosses the real axis at s− < r < sþ, where s�
are the larger and the smaller of the only two real roots of
the equation

s ¼ Kκðs−1Þþ1: ð10Þ

These roots can be shown to exist as long as κ > κc ¼
lnðκc lnKÞ þ lnðeKÞ= lnK, which can be rewritten as

W ≥ Wc ¼ 2eK lnðWc=2Þ ≈ 2eK lnðeKÞ: ð11Þ

Solution of Eq. (11) is nothing but the critical disorder of
Ref. [2] (see Eq. (84) there, see also the “upper limit critical
condition” of Refs. [6,7]). Since x ¼ NjψðiÞj2 < N in the
first term on the right-hand side of Eq. (8) one can deform
the contour of integration in Eq. (9) to encircle the pole
s ¼ sþ. For the second term, N1−κIð1 −m; κÞ, this can be
done only provided that xðN=KÞ2κ < N. Under this con-
dition the two terms cancel each other and PðxÞ≡ 0. In the
opposite case x > NðN=KÞ−2κ, the integral Ið1 −m; κÞ in
Eq. (9) is determined by the poles s ¼ s− and s ¼ 0. Within
the region of validity of the shortest path approximation
s−
2
ln x ∼ 2κ

W lnN ≪ 1 the two contributions cancel each

other, i.e., PðxÞ ¼ Ið1; 0Þ. Finally within the shortest path
approximation, for W ≫ Wc we have

PðxÞ ¼ θðx − xminÞ
N2

�
x
N

�ðsþ−3Þ=2
; ð12Þ

where xmin¼N1−2κK2κ⇒αmax¼2κð1−m−1Þ≈2κ. Using
the definition of αðxÞ Eq. (3) one obtains from the
power-law DF Eq. (12) the linear SFD fðαÞ, Eq. (7) with

kðWÞ ¼ 1

2
ð1 − sþÞ; ð13Þ

truncated at α > αmax. Note that for κ ≫ 1 (i.e., for
W ≫ 2K), Eq. (10) yields sþ≈1−κ−1, so that the condition
kðWÞαmax ¼ 1 encoded in Eq. (7) is satisfied at large
disorder (κ ≫ 1) and large system size (m ≫ 1). Power-
law distributions of wave function coefficients have been
observed in many-body systems also in the delocalized
region (see [26] where a criterion for ergodicity breaking
based on them was proposed).
Conclusion.—We developed an effective method for

extracting statistics of the smooth envelopes ψenðiÞ of
random eigenfunctions of the Anderson model (1) on RRG
and to extrapolate these results from RRG to the BL with an
infinite number of sites. Our results strongly suggests that
DF of jψenðiÞj2 in the limit N → ∞ indeed converges to the
form Eq. (3) regardless to the strength of disorder. As long
as the states are localized the spectrum of fractal dimen-
sions turns out to be triangular: fð0Þ ¼ 0 and the linear
fðαÞ is well described by Eq. (7). The slope k increases as
the disorder W decreases and reaches its maximal possible
value kc ¼ 1=2 at the Anderson transition point
W ¼ Wc ¼ 17.5. With further decrease of the disorder
below the critical one fðαÞ gradually crosses over to the
parabolic shape typical for weak multifractality: the two
roots of fðαÞ become positive 0 < αmin < 1 < αmax
(αmin → 0þ as W → W−

c ). However even for W several
times smaller than Wc both αmin and αmax turn out to be
quite far from 1, while the ergodicity would imply that
αmin; αmax → 1. We conclude that the nonergodicity and
multifractality persist in the entire region of delocalized
states 0 < W < Wc, and the only critical point is the point
of the Anderson localization transition.
It goes without saying that only RRG with not too big N

are accessible for the numerical analysis and one has to deal
with fðα; NÞ determined by Eq. (4). However the existing
data allow us to exclude the possibility that the observed
nonergodicity is a finite size effect. Our confidence is
based, among other things, on the existence of two fixed
points: fðα; NÞ is N independent at α ¼ α−ðWÞ < 1 and
α ¼ αþðWÞ > 1. The extrapolation of fðα; NÞ to N → ∞
in the interval α− ≤ α ≤ αþ turned out to be tremendously
reliable. It is thus hard to imagine how fðα; NÞ could
evolve to the ergodic limit with further increase of N.
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Another argument in favor of the true nonergodicity is
that the behavior of fðα; NÞ Eq. (4) is not a critical
behavior: fðα; NÞ depends on both N and W in a broad
range of these variables. Indeed the critical behavior, which
was analytically predicted in [27,28] for sparse random
matrices (SRM) implies that at W < Wc the eigenvectors
are ergodic or multifractal correspondingly for N > NcðWÞ
and for N < NcðWÞ (the critical volume NcðWÞ diverges as
W → Wc). Therefore fðα; NÞ depends either on N (in the
critical regime) or on W, but never on both N and W. The
reasons why the results of Refs. [27,28] do not apply to
the RRG eigenvectors will be discussed elsewhere.
The absence of ergodicity for the dynamics of the one-

particle Anderson model on the BL, in light of the possible
connection with the many-body dynamics, suggests serious
implications on the statistical mechanics of isolated sys-
tems with a large number of degrees of freedom. If the same
phenomenon occurs in the many-body case, the equiparti-
tion law is likely not to be valid exactly even for strongly
nonintegrable systems.
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