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The chiral AIII symmetry class in the classification table of topological insulators contains topological
phases classified by a winding number ν for each odd space dimension. An open problem for this class is the
characterization of the phases and phase boundaries in the presence of strong disorder. In this work, we derive
a covariant real-space formula for ν and, using an explicit one-dimensional disordered topological model, we
show that ν remains quantized and nonfluctuating when disorder is turned on, even though the bulk energy
spectrum is completely localized. Furthermore, ν remains robust even after the insulating gap is filled with
localized states, but when the disorder is increased even further, an abrupt change of ν to a trivial value is
observed. Using exact analytic calculations, we show that this marks a critical point where the localization
length diverges. As such, in the presence of disorder, the AIII class displays markedly different physics from
everything known to date, with robust invariants being carried entirely by localized states and bulk extended
states emerging from an absolutely localized spectrum. Detailed maps and a clear physical description of the
phases and phase boundaries are presented based on numerical and exact analytic calculations.
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In the classification table of topological insulators and
superconductors [1–3], the unitary class A is arguably the
most well understood, especially in the presence of disorder.
Here, in even space dimensions, the topological phases are
characterized by the Chern invariants [4], which are robust
against disorder and are carried by bulk extended states that
are embedded within a large set of localized states [5–8].
When the disorder is increased, the bulk extended states
above and below the Fermi level EF levitate toward one
another in the energy spectrum and then annihilate upon
collision, leading to topological phase transitions where the
localization length diverges. This complete picture that we
have for class A, and which was also observed in several
other symmetry classes [9–12], is often assumed to apply to
all symmetry classes in the classification table.
The AIII chiral-unitary class in odd space dimensions is

the natural partner of the A unitary class [1,13], and one
would expect a close similarity in their behavior at strong
disorder. In this Letter, we demonstrate similarities but
also several striking differences between the two symmetry
classes. First, we derive and compute a covariant, self-
averaging, real-space formula for ν in any odd dimension.
For a generic one-dimensional (1D) two-band model in the
AIII class, ν is found to remain quantized and nonfluctuating
even after the disorder completely fills the spectral gap with
localized states. When increasing the disorder even further, a
sharp drop of ν is observed from the topological to the trivial
value. We derive an analytical formula for the localization
length ΛðEÞ of the model at energy E ¼ 0 and show that it
diverges at this transition point. The similarities with the

A-symmetry class, however, end here. Using several estab-
lished numerical methods, we find that the entire bulk energy
spectrum is entirely localized immediately after the dis-
order is turned on. As the disorder is increased, the energy
spectrum remains localized until the transition point is
reached and a divergence ofΛðEÞ strictly at E ¼ 0 develops.
These findings demonstrate that robust topological numbers
can be carried entirely by localized states and that disorder
can drive a completely localized topological phase through a
delocalized critical point, in total contrast with the present
status quo on disordered topological insulators.
To understand the physical mechanism of the topological

phase transition, we map the disordered tight-binding
model into a spin-1=2 Hamiltonian via a Jordan-Wigner
transformation, which enables us to write the ground state
as a product state constructed from the single-particle
states with weights on only two sites for all Hamiltonian
parameters and disorder strengths except exactly at the
critical point. From here, we can show explicitly that the
topological invariant is shared among all localized states
and that the phase transition is driven by a proliferation of
low-energy modes which ultimately lead to the divergence
of the localization length and of the density of states
at E ¼ 0.
The disordered model we work with is

H ¼
X
n∈Z

�
tn

�
1

2
c†nðσ1 þ iσ2Þcnþ1 þ H:c:

�
þmnc

†
nσ2cn

�
;

ð1Þ
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where σα’s are Pauli’s matrices and c†n ¼ ðc†n;A; c†n;BÞ creates
particles of orbital type A or B at site n. The disorder is
present on both the hopping and on-site potentials: tn ¼
1þW1ωn and mn ¼ mþW2ω

0
n, where ωn and ω0

n are
independent randomly generated numbers drawn from the
uniform distribution [−0.5, 0.5]. The model preserves only
the chiral symmetry SHS−1 ¼ −H, with S ¼ P

nc
†
nσ3cn, as

the last term in Eq. (1) breaks both the particle-hole
(¼ σ3K) and time-reversal (¼ K, the complex conjugation)
symmetries. Despite the model’s simplicity, its behavior is
representative for the 1D AIII class because any gapped
chiral-symmetric system can be adiabatically deformed into
an independent sum of two-band models like Eq. (1).
In the clean limitW1;2 ¼ 0, the Bloch Hamiltonian takes

the form

hðkÞ¼
�

0 eik− im

e−ikþ im 0

�
; σ3hðkÞσ−13 ¼−hðkÞ. ð2Þ

The topological invariant of the model is given by the
winding number of the off-diagonal block of hðkÞ [14]:

ν ¼
Z

2π

0

∂kðeik − imÞ
eik − im

dk
2πi

¼
�
1 if m ∈ ð−1; 1Þ
0 otherwise:

ð3Þ

The bulk energy gap closes precisely at m ¼ �1, which
signals the topological phase transitions in the clean
system. In general, ν can take on any integer value, and
if n� denote the numbers of bound states of each chirality at
one end of an open chain, then topology enforces the bulk-
edge correspondence: ν ¼ �ðnþ − n−Þ. ν can also be
expressed as a “skew polarization”:

ν¼ 1

π

Z
2π

0

dk ~AðkÞ; ~AðkÞ¼ i
X
α∈occ

hSuαðkÞj∂kjuαðkÞi; ð4Þ

where juαðkÞi is the Bloch function for band α. Equation (4)
enables us to establish (see the Supplemental Material [15])
the relation 2P ¼ νmod 2, where P is the standard electric
polarization [4,18–22] (modulo an integer)

P¼ 1

2π

Z
2π

0

dkAðkÞ; AðkÞ¼ i
X
α∈occ

huαðkÞj∂kjuαðkÞi: ð5Þ

Note that P is quantized in units of 1
2
in class AIII, since

huαðkÞj∂kjuαðkÞi ¼ hSuαðkÞj∂kjSuαðkÞi; hence, the polar-
izations of the negative and positive energy bands are equal
and their sum must be an integer. The connection between ν
and P is particularly useful when disorder is present because
P can be efficiently computed from the Wannier centers of
the occupied states, providing an alternative numerical
method to explore ν in the presence of disorder, although
only modulo 2 (see the Supplemental Material [15]).
We now derive a covariant real-space representation of ν

in any odd space dimensions, which remains well defined in

the presence of disorder and can be evaluated with extreme
precision using the methods elaborated in Refs. [5,28–31]. It
is more convenient to work with the homotopically equiv-
alent flatband Hamiltonian:Q ¼ Pþ − P−, whereP� are the
projectors onto the positive or negative energy spectrum.
Since S† ¼ S and S2 ¼ 1, its eigenvalues are �1; hence,
S ¼ Sþ − S−, with S� being the corresponding spectral
projectors. Any chiral-symmetric operator, in particular, Q,
decomposes as Q ¼ SþQS− þ S−QSþ, and the following
relations are always true: ðS�QS∓Þ† ¼ S∓QS� ¼
ðS�QS∓Þ−1 (viewed as maps between S�H, where H is
the Hilbert space of the system). These provide the covariant,
real-space form of the off-diagonal term (and its inverse)
entering the winding number formula Qþ− ¼ SþQS−,
ðQþ−Þ−1 ¼ S−QSþ ¼ Q−þ. By recalling that

R
2π
0 ðdk=2πÞ×

trfg and ∂k can be represented in real space as a trace per
volume (denoted here by T fg) and as the commutator
−i½X; � (X ¼ the position operator), respectively, the k-space
expression [2] of ν in 2nþ 1 dimensions becomes

ν ¼ −ðπiÞn
ð2nþ 1Þ!!

X
ρ

ð−1ÞρT
�Y2nþ1

i¼1

Q−þ½Xρi ; Qþ−�
�
; ð6Þ

where the summation is over all possible permutationsρ of the
indices. In1D, ν ¼ −T fQ−þ½X;Qþ−�g,which is the formula
used in the present work. These real-space formulas can be
evaluated in the presence of disorder, and it is important to
note that they are self-averaging, so the result of a compu-
tation is independent of the disorder configurationbeing used.
Let us fix m ¼ 0.5, in which case ν ¼ 1 at W1;2 ¼ 0. In

the limit W2 → ∞, the on-site potential becomes dominant
and it commutes with X; hence, ν ¼ 0 in this limit. As such,
a topological phase transition takes place, which we explored
with Eq. (6). The behavior of ν with increasing disorder is
reported in Fig. 1, where one can see ν staying quantized and
nonfluctuating even after the spectral gap closes from the
strong disorder (no disorder averaging is necessary). Upon
further increase of disorder, an abrupt switch occurs from the
topological ν ¼ 1 to the trivial ν ¼ 0 value, accompanied by
strong fluctuations during the transition period. This behav-
ior leaves little doubt that a topological critical point is
lurking underneath. In fact, the analytic formula for the
localization length, which is developed next, shows that the
topological transition is accompanied by an Anderson
localization-delocalization transition.
Because of a simplification occurring at E ¼ 0, the

localization length of the disordered model and the critical
exponents at the critical point can be computed exactly at
the Fermi level (E ¼ 0). Indeed, the Schrödinger equation
Hψ ¼ 0 reads tnψn−α;α þ iαmnψn;α ¼ 0, where α ¼ �1
represents the A and B sites, respectively. The solution is

ψnþξα;α ¼ in
Yn
j¼1

�
tj
mj

�
α

ψξα;α;

where ξα ¼ 0; 1 for α ¼ �1, respectively, leading to
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Λ−1 ¼ max
α¼�1

�
− lim
n→∞

1
n log jψnþξα;αj

�

¼
���� limn→∞

1
n

P
n
j¼1ðln jtjj − ln jmjjÞ

����:
According to Birkhoff’s ergodic theorem, we can use the
ensemble average to evaluate the last expression:

Λ−1 ¼
����R 1=2

−1=2dω
R 1=2
−1=2dω

0ðln j1þW1ωj− ln jmþW2ω
0jÞ
����:

The integrations can be performed explicitly, and in the
regime of large W’s where the arguments of the logarithms
can become negative, we obtain

Λ−1 ¼
���� ln

�j2þW1j1=W1þ1=2

j2 −W1j1=W1−1=2
j2m −W2jm=W2−1=2

j2mþW2jm=W2þ1=2

�����: ð7Þ

Using a numerical transfer matrix and level-spacing
statistics analysis, we combed the energy spectrum and found
that, in every instance, all the states at E ≠ 0 are localized.
Hence, for the critical behavior, we can focus exclusively on
the caseE ¼ 0. This enables us touseEq. (7) to draw theexact
phase diagram in the three-dimensional parameter space (m,
W1,W2) by tracing the critical surfaceScwhereΛ → ∞. The
result is shown in Fig. 2(a), which reveals that we are indeed
dealing with two phases that are completely disconnected
from each other. We can show that the phase inside Sc is a
topological phase with ν ¼ 1, while outside Sc, ν ¼ 0. As
examples, in Figs. 2(b) and 2(c), we show calculations of ν
from Eq. (6) for the sections defined by W2=W1 ¼ 2 and
m ¼ 0.5, respectively, which confirms that the topological
phase ν ¼ 1 extends all the way to the critical line, beyond
which ν shifts abruptly to 0. By using the transfer matrix
method [32], the localization length was also obtained

numerically in Figs. 2(d) and 2(e), where one can see a
diverging critical line that matches perfectly with the analytic
critical line from Eq. (7). Equation (7) also enables us to
determine the critical exponent for the transition. Let (mc,Wc

1,
Wc

2) be a point on Sc. We can cross Sc by varying any of the
three parameters, so let us varym in a small interval [mc − ϵ,
mc þ ϵ]. As shown in the Supplemental Material [15],
Λ−1ðmÞ ¼ jm −mcj½c0 þ c1ðm −mcÞ2…�, which gives a
critical exponent 1, except along lines (1) and (2) shown in
Fig. 2(a), where the scaling has a logarithmic correc-
tion Λ−1ðmÞ ∼ jm −mcj ln jm −mcj.
We will now discuss the physical origin of the topo-

logical phase transition. Note that in 1D, there is no
obstruction to defining exponentially localized Wannier
functions in an insulating phase even if it is topological
[23–27]. In fact, in the flatband limit (m ¼ 0), we can find
ultralocalized Wannier functions near each site n: Wð−Þ

n ¼
1=

ffiffiffi
2

p ðjn; Bi þ jnþ 1; AiÞ, having weight only on two

FIG. 2 (color online). (a) The critical surface (Λ → ∞) in the
three-dimensional phase space (m,W1,W2). The lines (1) and (2)
represent the singular points where the scaling is anomalous (see
the text). The next panels report maps of the (b),(c) winding
number and (d),(e) localization length as computed with Eq. (6)
and with the numerical transfer matrix method, respectively, for
two sections of the phase space defined by the constraints (b),
(d) W2 ¼ 2W1 ¼ W and (c),(e) m ¼ 0.5. The analytic critical
curves are shown as black and white lines in (b),(c) and (d),(e),
respectively. The computations of ν were done for N ¼ 1000 and
averaged over ten disorder configurations. The transfer matrix
was iterated 108 times.

FIG. 1 (color online). Evolution of the winding number ν
[Eq. (6)] with disorder: W1 ¼ 0.5W and W2 ¼ W. The raw,
unaveraged data for 200 disorder configurations are shown by the
scattered points and the average by the solid line. Inset: The
conduction and valence edges as functions of W, indicating a
spectral gap closing at W ≈ 3 (marked by the dashed line in the
main panel). The marked data point reports a quantized
ν ¼ 0.9994, at disorder well beyond W ¼ 3.
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neighboring sites. When the system is tuned away from
m ¼ 0, but still in the topological phase, the Wannier
functions will gradually spread but still remain exponen-
tially localized at the midbond between sites n and nþ 1.
Thus, this system and, in fact, all 1D topological insulator
or superconductor phases can support a nontrivial integer
topological invariant, even though the occupied states can
be represented entirely using localized states. Additionally,
the well-known levitation-annihilation process in free-
fermion topological phases cannot possibly apply here
because there are no delocalized bulk modes which carry
the topological invariant. Instead, we will now show that
each single-particle electron state carries part of the
topological invariant, and because of this, a different type
of disorder-driven transition must occur.
To proceed, we map Eq. (1) to a spin-1=2 Hamiltonian

defined on a lattice of size 2N via the Jordan-Wigner
transformation cn;A ¼ ð−iÞnþ1Kð2nÞS−2n and cn;B ¼
ð−iÞnKð2n − 1ÞS−2n−1, where Sai are spin-1=2 variables
and KðmÞ ¼ exp ðiπPm−1

j¼1 Sþj S
−
j Þ is the kink operator.

These transformations lead to a Hamiltonian

H¼
X
i

2tiðŜx2iŜx2iþ1þ Ŝy2iŜ
y
2iþ1Þþ2miðŜx2iŜx2i−1þ Ŝy2iŜ

y
2i−1Þ;

which is the spin-1=2 XX model with random exchange
couplings 2ti (2miþ1) between the even (odd) bonds. There
is a simple form of the ground state in the spin representation
that simplifies the real-space description of the model. The
ground state can be constructed by a real-space renormal-
ization-group (RG) procedure which is asymptotically exact
[33,34]. Each RG step consists of decimating the pair of
spins that have the strongest exchange interaction by
enforcing a spin-singlet state for that pair and correspond-
ingly generating a new and weaker bond between the
neighboring spins. The final result is the ground state in
which each spin forms a singlet state with another spin in the
system. For the generic case in which the distributions ti and
mi are chosen to be different, the system is gapped and said
to be dimerized [35]. Roughly speaking, the topological and
trivial fermion phases correspond to dimerization patterns on
either the odd or even bonds in the spin system, and these
patterns are preserved during each RG step.
By the nature of the RG procedure, the singlets that are

generated never cross each other, which implies that every
singlet state in the ground state will be formed by one spin
belonging to sublattice A and another spin belonging to
sublattice B (a manifestation of the underlying chiral
symmetry). Let us associate with the ith singlet a pair of
numbers di ¼ fdi1; di2g which are the lattice sites of the
two spins in the singlet. The ground state is

jΩi ¼
Y
i

1=
ffiffiffi
2

p
½S†2di1 − S†2di2−1�j↓…↓i: ð8Þ

Ifwemap back to the fermion representation, the ground state
can be simplified to jΩi ¼Q

i1=
ffiffiffi
2

p ½αic†di1;A −βic
†
di2;B

�j0i,
where αi and βi have unit modulus and depend on the

configuration of the singlets (see the Supplemental Material
[15]). This formof the ground state is remarkable because it is
a product state constructed from the single-particle states
jΦii ¼ 1=

ffiffiffi
2

p ðαic†di1;A − βic
†
di2;B

Þj0i which, like the flatband
limit in the disorder-free system, only have weight on two
sites (although now the sites can be far apart). In this basis, the
real-space winding number formula drastically simplifies to

ν ¼ 1

N

XN
i¼1

ðdi2 − di1Þ; ð9Þ

which is just the sum of vectors connecting the end points of
the singlets. In the clean topological phase, ðdi2 − di1Þ ¼ 1
and ν ¼ 1=N

P
N
i 1 ¼ 1, as expected. By contrast, in the

trivial phase, singlets form on site, which implies
ν ¼ 1=N

P
N
i 0 ¼ 0. This clearly illustrates that it is not a

single delocalized statewhich carries the topological winding
number but instead the entire set of occupied states.We could
adiabatically deform the Hamiltonian while preserving chiral
symmetry, so that states of the form jΦii become the single-
particle eigenstates and then each state would carry a portion
1=Nðdi2 − di1Þ of ν.
We can further exploit the mapping to the spin model to

understand the nature of the topological phase transition.
Consider disordering a state that is dimerized on the even
bonds (i.e., the topological state). From the RG procedure,
one can see that disorder will favor the formation of regions
that dimerize on the odd bonds, so that trivial and
topological regions coexist. In the vicinity of the critical
point, the low-energy interface states formed between these
regions contribute to the spectral density inside the energy
gap. This type of behavior corresponds to a Griffiths phase
[35,36], which is not critical and thus explains why the
topological invariant does not change at the gap closing
point. The system becomes critical when dimerization
occurs equally on both the odd and even bonds, leading
to a proliferation of zero-energy interface states. As a result,
both the localization length as well as the density of states
become divergent at zero energy [37]. Similar physics,
albeit in a different context involving superconducting
wires, was discussed in Refs. [36,38], both of which are
important precursors for our work. The critical point
realizes the random singlet phase in which singlets are
formed on all length scales [39]. The divergent length scale
of singlet formation would appear to destabilize the wind-
ing number form in Eq. (9), as expected at criticality. To
further support the claim that the topological phase tran-
sition is in the same universality class as the random singlet
phase, we numerically confirmed (see the Supplemental
Material [15]) that the critical scaling of the entanglement
entropy contains the log 2 correction factor to the central
charge, as expected [40]. Increasing the disorder beyond
the critical point dimerizes the system on the odd bonds,
which thus leads to the trivial state.
Coming back to the difference between the A and the

AIII classes, we note that in class A, EF can be positioned
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anywhere in the energy spectrum and, when moving EF to
the global edges of the energy spectrum, a topological
insulator will necessarily transition to a trivial phase
somewhere along the way (since having all states occupied
or all unoccupied is a trivial insulator), and consequently,
bulk extended states will occur at the transition. This is why
extended states exist in the energy spectrum of topological
insulators from class A. This rationale, however, cannot be
applied to class AIII because, here, EF is fixed at E ¼ 0. If
EF is shifted, then the matrixQþ− is no longer unitary, so it
can fail to be invertible and the winding number is no
longer stable. As such, there is no reason for the existence
of extended states above and below EF in topological
insulators from the AIII class.
In conclusion, we have given a complete picture of the

physics of the disordered AIII class in 1D. We have given a
real-space formula for the AIII winding number in all odd
dimensions, shown that topological invariants can be
carried by localized states, and shown that, because of
this, the levitation and annihilation topological phase
transition is replaced by the random singlet transition for
the AIII class in 1D. It will be exciting to see if these types
of effects can be seen in higher dimensions.
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Note added.—Recently, another work on the AIII [and BDI
(models in the Altland-Zirnbauer classification respecting
particle-hole and time-reversal symmetry)] class appeared
discussing the properties of disordered wires from a
complementary renormalization-group point of view
[41], with a focus on the quantum criticality near the
topological transitions. There is some overlap between
the discussions in the two articles, and where this happens,
the conclusions agree. We believe that, together, these two
works provide a well-rounded description of the disordered
topological wires from the AIII class.
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