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We present transport experiments performed in high-quality quantum point contacts embedded in a
GaAs two-dimensional hole gas. The strong spin-orbit interaction results in peculiar transport phenomena,
including the previously observed anisotropic Zeeman splitting and level-dependent effective g factors.
Here we find additional effects, namely, the crossing and the anticrossing of spin-split levels depending on
subband index and magnetic field direction. Our experimental observations are reconciled in a heavy-hole
effective spin-orbit Hamiltonian where cubic- and quadratic-in-momentum terms appear. The spin-orbit
components, being of great importance for quantum computing applications, are characterized in terms of
magnitude and spin structure. In light of our results, we explain the level-dependent effective g factor in an
in-plane field. Through a tilted magnetic field analysis, we show that the quantum point contact out-of-
plane g factor saturates around the predicted 7.2 bulk value.
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The spin-orbit interaction (SOI) is a relativistic effect that
couples the motion of an electron to its spin [1]. For two-
dimensional electron gases in the conduction band of III-V
materials, SOI originates from bulk inversion asymmetry
(Dresselhaus SOI [2]) and structure inversion asymmetry
(Rashba SOI [3]) and takes the form HSO ¼ βDðσxkx−
σykyÞ þ αRðσxky − σykxÞ, with σ the Pauli matrices and k
the in-plane wave vector [4]. For two-dimensional hole
gases (2DHGs) in the valence band of GaAs, the situation
is very different. Because of the nonzero orbital angular
momentum, bulk SOI, and confinement in the growth
direction, SOI for holes is expected to be more pronounced
than for their electronic counterparts, mainly of Rashba
type and cubic in k [5,6]. The relevance of an additional
term, quadratic in k and proportional to the in-plane
components of the applied magnetic field B, was recently
proposed [7–10]. Such a term is unique for heavy holes and
very useful for exploiting SOI for quantum computing
applications [7]. In this Letter, we show how the cubic
and quadratic terms present in the bulk Hamiltonian can
be separately addressed in the magnetoconductance of a
quantum point contact (QPC) embedded in a 2DHG.
Furthermore, our results offer a better understanding of
the physics of p-type QPCs in terms of level-dependent
in-plane and out-of-plane g factors (g∥ and g⊥, respectively)
and allow us to measure the bulk g⊥. The latter is
particularly interesting, since the bulk g-factor anisotropy
of p-type GaAs [11–13] makes it impossible to directly
measure g⊥ with conventional transport techniques [14].

Theoretical predictions for a [001]-growth 2DHG estimate
g∥ ¼ 0 and g⊥ ¼ 7.2 [5,15]. It was argued [16] that in a
QPC, in the limit of high subband index n, g⊥ should
approach the bulk value. So far, despite the tendency of g⊥
to increase with n, this prediction was not experimentally
confirmed.
The experiment was performed by using a carbon-doped

GaAs 2DHG grown along the [001] direction. A strong
Rashba SOI is expected here due to the asymmetry of the
confinement potential. A complete characterization of this
2DHG and its very strong SOI has been reported in Ref. [6].
Three QPCs were defined by electron beam lithography

and wet etching and measured by standard low frequency
lock-in techniques at a temperature of 100 mK. Two side
gates allow independent tuning of the conductance of each
QPC. The lithographic width of the QPCs is 240 nm in one
case and 350 nm for the other two. The QPCs are arranged
to form a three-terminal cavity, whose properties will be
reported elsewhere. The presented results are independent
of the particular structure used. The measurements reported
in the following refer to the 350 nm wide QPC, aligned
along the [010] crystallographic direction. The other two
devices had similar orientation and showed comparable
results. Previous studies on QPCs embedded in [001]-
grown 2DHGs did not reveal any dependency of the
crystallographic orientation of the QPC [9,10]. The sample
was mounted on a tiltable stage that allowed rotation
around one axis. Changing the in-plane magnetic field
orientation by 90° required warming up the sample and
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manually changing its bonding configuration. In the color
plots that follow, we will show the QPC transconductance,
that is, the numerical derivative of the conductance with
respect to the gate voltage axis, in arbitrary units. The color
code used is such that a light yellow region indicates a
small transconductance (a plateau in the conductance) and a
dark blue line indicates high and negative transconductance
(the transition region between two plateaus).
The QPC zero-field linear conductance is shown in Fig. 1

as a function of the voltage Vg applied to its side gates.
In the leakage-free range of the side gates, the QPC shows
at least 10 well-developed plateaus. Figures 1(b)–1(d) show
the QPC transconductance for three different magnetic field
orientations with respect to the QPC axis. In Fig. 1(b), B is
applied out of plane; in Figs. 1(c) and 1(d), B is applied in
plane with direction parallel and perpendicular to the QPC
axis, respectively. Similarly to previous work [9,10,17], a
clear Zeeman splitting is present when B is out of plane or
in plane and oriented along the QPC axis. No evidence of
spin splitting up to 12 T is visible when the field is applied
in plane to the sample and perpendicular to the QPC axis. In
an out-of-plane field, in addition to the Zeeman splitting, a
bending of the levels towards higher energy (more negative
gate voltage) is observed. The latter is due to the formation
of magnetoelectric subbands caused by the combined effect
of cyclotron energy and confinement potential in the
transverse direction [18].
As observed in Refs. [9,10,17], the subbands cross in

an in-plane magnetic field oriented along the QPC axis
[Fig. 1(c)] independently of their quantum numbers.

Interestingly, when the field is out of plane [Fig. 1(b)],
spin-split subbands form a complex pattern where both
crossings and anticrossings appear. The high energy spin-
split subbands anticross with the low energy spin-split
subbands of the neighboring energy level. After the
anticrossing takes place, spin-split levels approach each
other and cross. In Fig. 1(b), we mark three examples of
anticrossings (red arrows) and crossings (black arrows).
The existence of these anticrossings for B along z (i.e.,
out of plane) suggests a strong influence of an in-plane
SOI field, which has finite matrix elements between the
Zeeman eigenstates. On the other hand, the absence of
anticrossings for B along x (i.e., along the QPC) is
consistent with such SOI being proportional to σx. As
we will show below, this interpretation is substantiated
through a model describing the interplay of a SOI quadratic
in k and the cubic Rashba SOI, which has previously
allowed one to explain the anomalous spin polarization
observed in hole QPCs through magnetic focusing [19].
We first show the relevance of a quadratic SOI of the type

Hð2Þ
SO ¼ γB∥ðp2

−σþ þ H:c:Þ=2 [7,8] in relation to Fig. 1(c).
To describe transport in the QPC, we assume a harmonic
confinement potential along y and a parametric dependence
on x of the lateral wave function [20]. The onset of a
conductance plateau occurs when kx ≃ 0, at the narrowest
point of the QPC constriction, and leads us to consider the
following unperturbed Hamiltonian:

H0 ¼
p2
y

2m
þ 1

2
mΩ2y2 − γB∥p2

yσx −
g⊥μB
2

B⊥σz; ð1Þ

with p� ¼ px � ipy, σ� ¼ σx � iσy, Ω2 ¼ ω2 þ ω2
c,

and ωc ¼ eB⊥=m. Notice that Eq. (1) is restricted to B
either along x or z (a general B in the xz plane is discussed

later) and is still valid for a more general Hð2Þ
SO, which takes

into account crystal anisotropy [10].
For B⊥ ¼ 0, the subband energies from Eq. (1) are

En;� ¼ ðn − 1=2Þℏω ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B∥=B0

p
, with B0 ¼ ð2γmÞ−1.

The values of B∥ at which the 1D levels cross are obtained
from the condition En;þ ¼ Enþi;−:

BðiÞ
n ¼ B0

ðnþ i − 1=2Þ2 − ðn − 1=2Þ2
ðnþ i − 1=2Þ2 þ ðn − 1=2Þ2 ð2Þ

and are compared directly to the experimental results.
In Fig. 2(a), we perform a fit of Eq. (2) (solid line) to
the crossing fields obtained from Fig. 1(c) up to fourth
order (dots). The theoretical model reproduces the exper-
imental crossings over a wide range of values of n and B∥
by using a single fitting parameter B0 ¼ 31.2 T. This result
is in reasonable agreement with perturbative estimates:
using the formulas of Ref. [10], for a triangular well with
the QPC along [010] and 2D density ns ¼ 3 × 1015 m−2,
we obtain B0 ≃ 80 T. The obtained value strongly depends
on the detailed form assumed for the confinement [10].

FIG. 1 (color online). (a) QPC linear conductance for B ¼ 0 as
a function of gate voltage; a gate-dependent contact resistance is
subtracted from the raw data. (b) Transconductance as a function
of gate voltage and B⊥. The arrows point to three examples of
anticrossing (red) and crossing (black). (c) Transconductance as a
function of gate voltage and B∥, with B∥ aligned with the QPC
axis. (d) Transconductance as a function of gate voltage and B∥,
with B∥ aligned perpendicular to the QPC axis.
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A valuable feature of Eq. (2) is the weak dependence on
the specific form of the lateral potential assumed in Eq. (1),
which allows one to single out the effect of the quadratic
SOI. Equation (2) is independent of the QPC harmonic
confinement potential ℏω. Considering an infinite well is
achieved by the replacement n → nþ 1=2 in Eq. (2). The
equation in this case is independent of the width Δy. This
introduces a small change in BðiÞ

n at moderate n, and the

large-n asymptotic behavior BðiÞ
n ≃ B0i=n is not affected.

Therefore, the experimental values of BðiÞ
n are reproduced

with similar accuracy [dotted line in Fig. 2(a)] by using
B0 ¼ 33 T. In contrast, other quantities are generally rather
sensitive to the form of the lateral potential, only approx-
imately known. For example, by following the arguments
of Refs. [9,10], g∥ for subband n is obtained as gn ¼
ð2n − 1Þℏω=ðμBB0Þ and gn ¼ ðnπℏ=ΔyÞ2=ðmμBB0Þ for
harmonic and rectangular confinement, respectively.
These values have a strong dependence on the confinement
parameters ω and Δy as well as on n. Independently of the
specific confinement chosen, the increasing value of g∥
with n finds agreement with the experiment [see the later
analysis leading to Fig. 5(a)].
We now consider B∥ ¼ 0 and the effect of the Rashba

SOI. From a third-order perturbative calculation for the
two-dimensional subbands, the following form of aniso-
tropic SOI is obtained:

Hð3Þ
SO ¼ −½α2fpy; ðp2

x − p2
yÞg þ 2α3fpx; fpx; pygg�σx

þ ½α2fpx; ðp2
x − p2

yÞg − 2α3fpy; fpx; pygg�σy; ð3Þ

where fa; bg ¼ ðabþ baÞ=2 and px ¼ ℏkx − eB⊥y. By
taking α2;3 ¼ α and B⊥ ¼ 0, Eq. (3) recovers the more
familiar isotropic expression iαðp3þσ− − H:c:Þ=2 [21].
Taking kx ≃ 0 in Eq. (3) allows one to explain the

anticrossings observed when B∥ ¼ 0 [red arrows in

Fig. 1(b)] as due to the finite off-diagonal matrix element

between Zeeman eigenstates [22]: hnþ 1;↑jHð3Þ
SOjn;↓i ¼

iðΩþωcÞ½3α2ðΩ2 þω2
cÞ− 2ð2α2 þ α3ÞΩωc�ðnℏm=2ΩÞ3=2

(for B⊥ > 0). Interestingly, hnþ 2; σ0jHð3Þ
SOjn; σi ¼ 0, since

Hð3Þ
SO is odd with respect to y → −y. This feature is in

agreement with the higher-order crossings or weak anti-
crossings observed in the experiment [black arrows in

Fig. 1(b)]. The full eigenstates of H0 þHð3Þ
SO for kx ≃ 0 are

computed as a function of B⊥ in Fig. 2(b), which is
remarkably close to the experiment considering our very
simplified modeling of the QPC. Among the other features,
our model predicts a nonmonotonic behavior of the
anticrossing gaps with n, as observed in both Figs. 1(b)

and 2(b). It arises due to the fact that hnþ1;↑jHð3Þ
SOjn;↓i¼0

at a specific value of B⊥. This is possible only if α2 ≠ α3;

i.e., it is due to the anisotropy inHð3Þ
SO. The spin dependence

of Eq. (3) is also in agreement with the absence of
anticrossings in Fig. 1(c), as, for B⊥ ¼ 0 and kx ≃ 0,

Hð3Þ
SO simplifies to α2p3

yσx and the spin-orbit perturbation
is parallel to B. The same is not expected for a general
SOI: the Dresselhaus term derived in Ref. [7] yields
βðp−pþp−σþ þ H:c:Þ=2≃ βp3

yσy, which would induce
anticrossings also when B is parallel to the QPC.
After theoretically understanding the effects of a purely

in-plane or out-of-plane field, it is interesting to consider
the effect of a tilted field. This discussion will lead us to
an experimental determination of g⊥. Figure 3 shows four
transconductance maps taken for different tilt angles θ
between the 2DHG and the magnetic field, where θ is
indicated in red (θ ¼ 90° indicates a completely in-plane

FIG. 2 (color online). (a) Crossing fields BðiÞ
n extracted from

Fig. 1(c) (dots) together with a fit of Eq. (2) assuming harmonic
confinement (solid lines) or hard wall confinement (dotted lines).

(b) Calculated kx ¼ 0, B∥ ¼ 0 eigenvalues of H0 þHð3Þ
SO. The red

arrows indicate anticrossing points between n and nþ 1 states;
the black arrows indicate crossing points between n and nþ 2
states. We used ℏω ¼ 0.4 meV, g⊥ ¼ 7.2, m ¼ 0.3m0, and
ℏ3α2;3 ¼ 0.08γ2;3 eV nm3 (with γ2;3 Luttinger parameters), close
to the numbers used in Refs. [6,19].

V
g
 (V)

−1 0 1
0

3

6

9

12

B
 (

T
)

0

0.2

0.4

0.6

B
⊥ (

T
)

V
g
 (V)

−1 0 1
0

3

6

9

12

B
 (

T
)

0

0.5

1

1.5

2

2.5

B
⊥ (

T
)

V
g
 (V)

−1 0 1
0

3

6

9

12

B
 (

T
)

0

1

2

3

4

B
⊥ (

T
)

V
g
 (V)

−1 0 1
0

3

6

9

B
 (

T
)

0

1

2

3

4

B
⊥ (

T
)

(a)

(c)

(b)

(d)

86.7° 78°

70° 60°

FIG. 3 (color online). QPC transconductance as a function of
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field). The in-plane magnetic field component was kept
along the QPC axis. Crossings turn successively into
anticrossings with decreasing tilt angle θ. We mark with
a red and a black arrow two of these transitions. For a tilt
angle of 86.7° [Fig. 3(a)], the anticrossings for a subband
index n < 8 tend to become crossings. The high index
subbands (n > 8), that lie at very small in-plane fields,
still evidently anticross. The features discussed for the
θ ¼ 86.7° data are well reproduced in the numerical results
of Fig. 4(a). For smaller tilt angles, the general trend
observed in Fig. 3 is also found in the simulations as visible
in Fig. 4(b). We tested the effect on an in-plane electric field
by acquiring transconductance measurements with an
asymmetric gate voltage bias. The size of the anticrossing
did not change up to a voltage difference between the
two side gates of 1 V, independently of the magnetic field
tilt angle.
We now turn to the determination of g∥ and g⊥.

Performing finite bias measurements, we calculated the
side gate lever arm αðVgÞ and converted the gate voltage
axis into an energy axis. In such a way, we can directly trace
the difference between spin-split levels in Fig. 1(c) as E∥ ¼
g∥μBB∥ and calculate g∥ as a function of n. This technique
is extensively described in Ref. [16] or in the Supplemental
Material [23]. In Fig. 5(a), we observe two distinct
behaviors: for n < 6, g∥ increases; for n > 6, it decreases.
The initial increasing tendency was observed in numerous
experiments [9,10,16,17,26] and is explained by the pres-
ence of Hð2Þ

SO. The following tendency reversal naturally
originates from the fact that g∥ vanishes in the absence of
lateral confinement, in a first-order approximation.
The values of g⊥ could not be deduced from Fig. 1(b)

directly due to strong distortions in the linear dependence
of the Zeeman splitting introduced by the anticrossings.
Therefore, we measure the level-dependent g⊥ by using a
tilt angle of 86.7° [data of Fig. 3(a)]. This approach is
justified, since a large in-plane field suppresses the anti-
crossings and allows one to extract g⊥ more accurately than
at θ ¼ 0° from the linear splitting at low B⊥. Similarly to
before, we tracked the level position as a function of energy
and total field B, obtaining the total Zeeman splitting

EZ ¼ μB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2⊥B2⊥ þ g2∥B

2
∥

q
. Using the values from g∥ of

Fig. 5(a), we extract g⊥ for n ≤ 8 with a linear fit offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
Z − μ2Bg

2
∥B

2
∥

q
. More details about this procedure are

reported in the Supplemental Material [23]. The results
are shown in Fig. 5(b), where g⊥ has the tendency to
increase with n up to n ¼ 5 and subsequently saturates.
The saturation, concomitant with the decreasing tendency
of g∥, is compatible with the theoretical expectation of
g⊥ ¼ 7.2 expected for heavy holes in a bulk 2DHG [5]. The
residual presence of anticrossings for n ≥ 8 leads to an
apparent decrease of Zeeman splitting and a consequent
decrease of the extracted g⊥.
The values g⊥ < 7.2 are consistent with theoretical

predictions for narrow 1D wires with a strong heavy-
hole—light-hole mixing [17]. Similarly reduced values of
the bulk g⊥ were measured from the optical spectrum of
excitons (e.g., g⊥ ≃ 2.5 in Ref. [11]) and were related as
well to light-hole—heavy-hole mixing [12,27]. In this
framework, the level dependence of g⊥ is possibly due
to the lower subbands having a stronger lateral confine-
ment, as confirmed by finite bias measurements. A narrow
QPC (i.e., with width comparable to the well thickness)
cannot be treated through a 2D effective SOI. These
limitations of our model might explain the discrepancy
between the anomalous behavior of the first plateau
and the large Zeeman splitting obtained for n ¼ 1 in
Figs. 2(b) and 4. In the regime where the anticrossings
are suppressed and the lateral confinement potential is
weak, the experimental g⊥ is comparable to the expected
value of 7.2.
In conclusion, we have investigated the SOI Hamiltonian

of a 2DHG by using a QPC. With an in-plane field, the
level crossings confirm the presence of a quadratic SOI
and allow us to measure its direction and strength. The
pattern of crossing and anticrossing observed for an
out-of-plane field is compatible with the spin structure
of an anisotropic cubic Rashba SOI for heavy holes. Our
results give a deeper understanding of spin interactions in
2DHGs, in particular, regarding anisotropic effective g
factor and the interplay between different mechanisms
of SOI.

FIG. 5 (color online). (a) Measured g∥ as a function of n.
(b) Measured g⊥ as a function of n. The predicted bulk value [5]
of g⊥ ¼ 7.2 is indicated by the dashed line.
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