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We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast
to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced
not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We
illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin
and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a
technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.
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Introduction.—The discovery of two-dimensional (2D)
Dirac materials has been a rapidly unfolding trend recently
[1]. Materials such as h-BN [2] and transition-metal
dichalcogenides, in particular MoS2 semiconductor [3],
hold great promise for electronic and optical applications
[4]. An important feature of these “Dirac semiconductors”
is their intrinsic valley degrees of freedom that can couple
to magnetic perturbations. 2D Dirac materials are also
promising candidates for implementing spintronic devices
due to their potential in achieving long electron spin
lifetime and achieve nondissipative control of spin and
valley currents via the quantum spin or valley Hall effect
[5]. However, the spin dynamics of near-equilibrium Dirac
electrons in 2D MoS2 is difficult to explore with a standard
optical pump-probe setup [6,7] because excited electrons
and holes under circularly polarized light form strongly
bound excitonic states with lifetimes that are short com-
pared to spin relaxation times. This is likely a reason that so
far spin lifetimes of free carriers have not been measurable
with the standard optical pump-probe technique.
The recently developed optical spin noise spectroscopy

(SNS) [8] is an emerging technique that is uniquely
positioned to explore the spin dynamics in 2D Dirac
materials. It circumvents the aforementioned problem
because it does not require optical pumping and can probe
spin dynamics at thermodynamic equilibrium. It has been
used successfully to determine the spin coherence and spin
relaxation times in bulk GaAs [9], quantum wells [10,11],
and quantum dots [12]. Spin noise is studied via the
illumination of a linearly polarized light on a mesoscopic
region of the sample. The Faraday rotation angle of the
polarization axis of the measurement beam is proportional
to the instantaneous total spin polarization and can be
detected with a sensitivity reaching a single spin level [13]
and picosecond time resolution [14]. The noise power
spectrum typically exhibits a peaked profile in a magnetic
field transverse to the measurement axis, with the peak
location yielding the g factor and the broadening yielding
the spin relaxation time. Importantly, SNS is a minimally

invasive approach that does not require one to artificially
create a strongly nonequilibrium spin polarization.
In this Letter, we develop a theory of the optical spin

noise spectroscopy for two-dimensional Dirac semicon-
ductors. We take 2D MoS2 as the prototypical example and
study its spin noise dynamics within a Langevin equation
framework. We identify and discuss regimes of interest
where fluctuations due to spin flip and intervalley scattering
events predict measurable signatures in the Faraday noise
power spectrum from which information about spin and
valley relaxation processes can be inferred. Our main
finding is that the Faraday rotation noise of Dirac electrons
is sensitive to fluctuations in both spin and valley degrees
of freedom. Since the noise contribution from spins is
sensitive to an external magnetic field, it should be possible
to clearly separate spin and valley dynamics.
Faraday rotation fluctuations.—We first establish a

general relationship between the Faraday rotation fluctua-
tions and the spin noise in a 2D system of degenerate
itinerant electrons. To this end, we define the positive and
negative helicity components of the optical conductivity
tensor as σ� ¼ σxx � iσxy, where σxx and σxy are the
longitudinal and Hall conductivities of the 2D system.
The real part Reσ� ¼ Reσxx∓Imσxy corresponds to
dissipative on-shell electronic transitions whereas the
imaginary part Imσ� ¼ Imσxx � Reσxy corresponds to
dissipationless virtual transitions. Throughout this Letter,
we adopt “natural units” by normalizing optical conduc-
tivities by the speed of light c so that σxx; σxy are in units of
the fine structure constant α ≈ 1=137. Analysis of the
electromagnetic transmission problem through the 2D layer
[15] yields the Faraday rotation θF ¼ ðθþ − θ−Þ=2, where
θ� ¼ −tan−1½2πImσ∓=ð1þ 2πReσ∓Þ� is the phase of the
positive and negative helicity components, respectively, of
the electric field transmitted through the layer. It is clear
that Imσ� contributes to circular birefringence and Reσ�,
in subleading orders, to circular dichroism.
The power of optical spin noise spectroscopy lies in its

minimally invasive nature that allows it to probe the system
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under study at thermal equilibrium. This is achieved by
tuning the light frequency to a value that is smaller than the
electronic band gap Eg, with the detuning ωd ≪ Eg so as to
maximize the observed Faraday rotation signal. Dissipative
transitions are, therefore, forbidden with Reσ� ≃ 0, and the
optical response is largely reactive and dissipationless.
2Dmaterials obeying themassiveDirac energy dispersion

are described by theHamiltonianH0 ¼ ℏvðτkxσ̂x þ kyσ̂yÞþ
ðΔ=2Þσ̂z,wherev is thebandvelocity,Δ is thebandgap, σ̂ are
the Pauli matrices describing the sublattice degrees of
freedom, and τ ¼ �1 denotes the valley degrees of freedom
K;K0. The valley degrees of freedom in addition to spins are
endowed with magnetic moments that can couple to time-
reversal breaking perturbations such as external magnetic
fields or circularly polarized light. Therefore, the Faraday
rotation will be sensitive to the electron population
differences between spins and valleys.
To derive the Faraday rotation, we consider the situation

with a nonequilibriumdistributionof Fermi levels among the
four possible quantum states ðK;↑Þ; ðK;↓Þ; ðK0;↑Þ; ðK0;↓Þ
in the conduction bands of the system,where↑;↓ denote the
up and down spins. Intravalley spin-conserving scattering is
fast compared to intravalley spin-flip or intervalley scatter-
ing, so one canwrite the corresponding Fermi levels for each
spin and valley as ϵτF;s ¼ ϵF þ δϵτs, where τ ¼ �1 corre-
sponds to K;K0 and s ¼ �1 to ↑;↓, ϵF is the equilibrium
Fermi energymeasured from the conduction band edge, and
δϵτs is the nonequilibrium Fermi energy fluctuations for each
spin s and valley τ. Such a nonequilibrium distribution of
Fermi energies is constrained by conservation of the total
number of electrons; therefore, δϵτs must satisfy an implicit
condition given by

P
s;τ¼�1δn

τ
s ¼ 0where δnτs is the density

fluctuations corresponding to δϵτs.
The optical conductivity due to such a nonequilibrium

Fermi level distribution is

σ� ¼
X

τ¼K;K0

X

s¼↑;↓

στ�;sðϵF þ δϵτsÞ; ð1Þ

where στ�;s refers to the conductivity for spin s and valley τ
with the frequency label ω suppressed for clarity. We
expand Eq. (1) up to first order in the small parameter
δϵτs=ϵF as appropriate for small fluctuations. Noting that the
two Hall contributions at the Fermi level ϵF due to theK;K0
valleys cancel and using the expressions for θ�, we obtain
the nonequilibrium Faraday rotation

θF ¼ 2π

1þ ½2πImσxxðϵFÞ�2

×
X

τ¼K;K0

X

s¼↑;↓

∂Reστxy;sðϵÞ
∂ϵ

����
ϵ¼ϵF

δϵτs; ð2Þ

where σxx is the total longitudinal conductivity summed
over all spins and valleys.

2D transition-metal dichalcogenides.—Equation (2) is
applicable to massive Dirac fermion 2D systems or their
multilayered derivatives. In particular, the large energy
gap Eg ∼ eV of 2D transition-metal dichalcogenides makes
them especially suitable as prototypical 2D Dirac materials
amenable to study with SNS. Because of spin-orbit
coupling, 2D transition-metal dichalcogenides also exhibit
coupled spin and valley dynamics. The low-energy k:p
Hamiltonian near the Brillouin zone corners K;K0 is given
by [16] H ¼ H0 þHSO, where H0 is the massive Dirac
Hamiltonian defined earlier and HSO ¼ −λτðσ̂z − 1Þŝz=2
is the spin-orbit coupling term with ŝz the Pauli matrix
describing the spin degrees of freedom and strength
λ ∼ 10–100 meV.
With the band gap given by Eg ¼ Δ − λ, the frequency of

the probe laser beam is ωpb ¼ Δ − λ − ωd. The optical Hall
and longitudinal conductivities are calculated using theKubo
formalism, and we find (see the Supplemental Material [17])

Reστxy;s ¼ −
τα

4π

Δ − sτλ
Δ − λ − ωd

Fτ
sðϵF;ωdÞ; ð3Þ

Imστxx;s ¼ −
α

8π

�
2ϵF þ Δ − sτλ
Δ − λ − ωd

�
1þ

�
Δ − sτλ

2ϵF þ Δ − sτλ

��
2

þ
�
1þ

�
Δ − sτλ

Δ − λ − ωd

�
2
�
Fτ
sðϵF;ωdÞ

�
; ð4Þ

for each spin and valley s; τ ¼ �1 and Fτ
sðϵF;ωdÞ ¼

ln j½2ϵF − ðsτ − 1Þλþ ωd�=½2ϵF þ 2Δ − ðsτ þ 1Þλ − ωd�j.
Equations (3) and (4) are valid for our regime of interest
at low temperatures kBT ≪ ϵF and for clean enough
samples such that disorder broadening ℏ=τ ≪ ωd.
To connect the Faraday rotation fluctuations with exper-

imental observables, we first express Eq. (2) in terms of
electron densities. The Fermi level fluctuations can be
related to the number density fluctuations as δnτs ¼
ντsðϵFÞδϵτs, where ντsðϵÞ ¼ ð2ϵþ Δ − τsλÞ=4πðℏvÞ2 is the
density of conduction band states per unit area. The
nonequilibrium spin density fluctuations are given by
δsKz ¼ ðδnK↑ − δnK↓ Þ=2 for valley K and similarly for K0,
whereas the valley density fluctuations are given by
δnK ¼ ðδnK↑ þ δnK↓ Þ=2, with δnK

0 ¼ −δnK. Using these
relations and substituting Eqs. (3) and (4) in Eq. (2), we
obtain the Faraday rotation fluctuations

θF ¼ LsSz þ LvNv; ð5Þ
where Sz ¼ ðδsKz þ δsK

0
z ÞA and Nv ¼ ðδnK − δnK

0 ÞA are
respectively the total spin and total valley polarization
fluctuations over the cross-sectional area A of the incident
probe laser beam, and Ls;v ¼ ðLþ � L−Þ=A are the spin
and valley coupling coefficients, respectively, with L� ¼
�8παðℏvÞ2ðΔ∓λÞ=f½ω2

pb − ð2ϵF þ Δ∓λÞ2�ð2ϵF þ Δ∓λÞ
×f1 þ ½2πImσxxðϵFÞ�2gg. Equation (5) is a central result of
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this Letter. Importantly, valley fluctuations and spin fluc-
tuations contribute on an equal footing to the Faraday
rotation in Dirac materials. This implies that the relaxation
dynamics of both spins and valleys can be optically probed
using Faraday rotation spectroscopy.
To determine the noise properties of the Faraday rotation,

we now derive the kinetic equations governing the spin and
valley fluctuations. To this end, we first obtain an effective
Hamiltonian for conduction-band states near the band edge.
Using Löwdin’s partitioning [18], we find the following
effective Hamiltonian for conduction-band electrons with
Fermi level ϵF ≪ Δ in an external field

Hc ¼
ℏ2k2

2me
þ τ

ℏΩSOðkÞ
2

ŝz þ ~gðkÞμBB · ŝ; ð6Þ

where me ¼ ðΔ2 − λ2Þ=ð2Δv2Þ is the effective mass,
~gðkÞ ¼ g½1þ ðℏvkÞ2=ðΔ2 − λ2Þ� is the renormalized g
factor [19], and ΩSOðkÞ ¼ 2λℏðvkÞ2=ðΔ2 − λ2Þ. Note that
the spin-orbit coupling acts on conduction electrons as an
effective out-of-plane magnetic field with opposite sign
τ ¼ � in different valleys.
Using Eq. (6) and the equation of motion for the spin-

valley density matrix [20], we obtain the following kinetic
equations for the total spin fluctuations per valley Sτ and
total valley polarization fluctuations Nv

∂Sτ
∂t þ τSτ ×ΩSO þ Sτ ×ΩL

¼ −
Sτ

Ts
þ S−τ − Sτ

Tv
þ ητs þ ητv; ð7Þ

∂Nv

∂t ¼ −
Nv

Tv
þ ηN; ð8Þ

where ΩSO ¼ ΩSOðkFÞẑ is the effective out-of-plane mag-
netic field induced by spin-orbit coupling and ΩL ¼
~gðkFÞμBB=ℏ at the Fermi level. The spin relaxation time
Ts [21] captures the relaxation of nonequilibrium spin
fluctuations in one valley due to possible spin-flip scatter-
ing with magnetic defects [22] as well as D’yakonov-Perel’
and Elliot-Yafet mechanisms [23]; whereas the valley
relaxation time Tv describes the relaxation of valley
fluctuations due to intervalley scattering from atomically
sized nonmagnetic impurities or electron-phonon interac-
tion that induces momentum transfer on the order of inverse
lattice spacing [24]. ητs and ητv are the corresponding noise
sources that describe spin fluctuations S in valley τ due to
spin and valley relaxation, respectively, while ηN describes
fluctuations of the valley polarization Nv. The different
physical origin of these noise terms implies that ητs is
uncorrelated to ητv and ηN . The latter two can also be
considered mutually uncorrelated if intervalley scattering
processes of up and down spins are statistically indepen-
dent and equally probable. Because of the large

(mesoscopic) number of electrons involved, the time
correlators of these noise sources at thermodynamic equi-
librium can be regarded as δ-function correlated and are
constrained by the fluctuation-dissipation theorem to have
the following form [20,25]:

hðητsðtÞÞαðητ0s ðt0ÞÞβi ¼ δττ0δαβ
2DkBT
Ts

δðt − t0Þ; ð9Þ

hðητvðtÞÞαðητ0v ðt0ÞÞβi ¼ ðδττ0 − δτ;−τ0 Þδαβ
2DkBT
Tv

δðt − t0Þ;

ð10Þ

hηNðtÞηNðt0Þi ¼ 4DkBT
Tv

δðt − t0Þ; ð11Þ

where α; β ¼ x; y; z, T is temperature, and D is the density
of conduction-band states at the Fermi surface in the
observation area A per band and per unit energy.
The Faraday rotation noise power follows from Eq. (5),

hj~θFðωÞj2i ¼ L2
shj ~SzðωÞj2i þ L2

vhj ~NvðωÞj2i; ð12Þ

where ~SzðωÞ and ~NvðωÞ are the total spin and total valley
polarization noise power with ~XðωÞ≡ limTm→∞ð1=

ffiffiffiffiffiffi
Tm

p Þ×R Tm
0 dteiωtXðtÞwhere ω is the noise frequency and Tm is the
measurement time. Since ητs, ητv, ηN are mutually uncorre-
lated, the dynamics of the valley polarization Nv decouples
from that of the spins and can be readily obtained as

hj ~NvðωÞj2i ¼
4DkBT=Tv

ω2 þ 1=T2
v
: ð13Þ

The valley dynamics is, therefore, described by a single
Lorentzian noise power peak centered at zero frequency
that is insensitive to the applied magnetic field [26], and the
valley relaxation time Tv can be extracted from the width of
the peak. For the spin dynamics, the Langevin equation for
spins Eq. (7) corresponds to an Ornstein-Uhlenbeck proc-
ess [25] with the spin noise correlators given by

h ~SταðωÞ ~Sτ
0
β ð−ωÞi ¼

�
1

A − iω
G

1

AT þ iω

�

τα;τ0β
; ð14Þ

where A is the relaxation time matrix Aτα;τ0β¼
−δαβðδττ0=Tsþðδττ0−δτ;−τ0 Þ=TvÞþδττ0 ðτΩSOεαzβþΩLεαxβÞ
(here εijk is the Levi-Civita symbol) and Gτα;τ0β ¼
δαβ2DkBTðδττ0 ð1=Ts þ 1=TvÞ − δτ;−τ0=TvÞ. Equation (14)
can be evaluated analytically in closed form (Supplemental
Material [17]).
The 2D transition-metal dichalcogenide MoS2 has a

band gap in the optical spectrumΔ ¼ 1.7 eV and spin-orbit
coupling λ ¼ 75 meV [16]. For typical Fermi energies ϵF ∼
10 meV near the band edge, detuning ωd ∼ 10 meV, and
laser spot size A ∼ 1 μm2, we have total spin and valley
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polarization fluctuations
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjSzj2i

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjNvj2i

p
∼ 200 in the

observation region with a total number of electrons ∼104.
The Faraday rotation fluctuations is approximately coupled
to the valley and spin degrees of freedom with jLs=Lvj ≈
0.1 and the root-mean-squared Faraday angle fluctuationsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjθFj2i

p
∼ 1 μrad, which is within the state-of-the-art

measurement capabilities.
The behavior of the spin noise power spectrum of a Dirac

semiconductor described by Eq. (7) depends on the inter-
play between the spin and valley relaxation, the spin-orbit
coupling, and the external magnetic field. In MoS2, the
spin-orbit splitting ℏΩSO ∼ ϵFλ=Δ ≈ 0.5 meV corresponds
to a strong magnetic field of ∼8 T, which strongly favors
out-of-plane spin alignments and, hence, resists Larmor
precession due to the applied in-plane field. Given that the
spin relaxation time is expected to be long Ts ∼ 10 ns [23],
the behavior of the noise spectrum will then critically
depend on the valley scattering time. Intervalley scatterings
are seen by electron spins as random sign changes of the
spin-orbit fieldΩSO, so depending on the scattering rate this
field may or may not be effectively averaged to zero. Our
studies of Eq. (14) have identified three basic regimes
(Supplemental Material [17]).
(i) Slow intervalley scattering: 1=Tv ≪ ΩSO. In this

regime, the Faraday rotation noise power spectrum consists
of the valley noise component given by Eq. (13) and spin
noise components (Fig. 1). At small fields ΩL ≪ ΩSO, the
spin noise part of the power spectrum is a Lorentzian peak
centered at zero frequency

hj ~SzðωÞj2i ¼
4DkBT=Ts

ω2 þ 1=T2
s
: ð15Þ

A finite frequency peak starts to emerge at ΩL ∼ΩSO
[Fig. 1(a)]. It is centered near the effective spin precession
rate Ωeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

L þΩ2
SO

p
. At ΩL > ΩSO, the total noise

power clearly consists of two peaks: one centered at zero
frequency due to intervalley scattering and the finite

frequency peak due to spin precession [Fig. 1(b)]. In
MoS2, ΩSO ∼ THz and the finite frequency peak cannot
be resolved with currently accessible 100 GHz bandwidth
spectroscopy [14].
(ii) Moderately fast intervalley scattering: 1=Tv ≲ ΩSO.

In this case, the finite frequency peak still appears only at
large external fields ΩL ∼ ΩSO. However, even a moderate
in-plane magnetic field (≲1 T) induces a Dyakonov-Perel-
type spin relaxation by making the directions of the total
field ΩSO þΩL in K and K0 valleys noncollinear with each
other. This results in a broadening of the zero-frequency
peak as shown in Fig. 2(a). The profile is generally non-
Lorentzian, for which we have derived the relative ampli-
tude of the correlator at zero and at finite magnetic fields as
hj ~Szðω ¼ 0Þj2iΩL¼0=hj ~Szðω ¼ 0Þj2iΩL≠0 ¼ 1 þ 2Ω2

LTs=
ðΩ2

SOTvÞ. By measuring the evolution of the peak maxi-
mum with a changing external field, one can, therefore,
obtain the combination of parameters Ω2

L=ðΩ2
SOTvÞ in

addition to the spin relaxation time Ts.
(iii) Fast intervalley scattering: 1=Tv > ΩSO. In this case,

the out-of-plane spin-orbit field ΩSO is quickly random-
ized. A moderate magnetic field is then sufficient to drive
Larmor precession, which displaces the spin noise peak
from zero frequency to ΩL ∼ GHz, as shown in Fig. 2(b).
We find that the peak is then approximately Lorentzian
near the peak center ΩL with a spin relaxation time
being renormalized by the fluctuating spin-orbit coup-
ling 1=T̄s ¼ 1=Ts þ Ω2

SOTv=4. This behavior can be
observed with the state-of-the-art high-bandwidth spin
noise spectroscopy [14].
Conclusion.—We showed that the Faraday rotation noise

of Dirac electrons is sensitive to fluctuations of both the
spin and valley degrees of freedom. The noise power
spectrum contains an additional peak centered at zero
frequency that is due to valley noise and does not couple
to external in-plane magnetic fields. We also predict that,
due to spin-orbit splitting of electronic bands, a Larmor
peak will appear only in relatively strong external magnetic

FIG. 1 (color online). Total noise power spectrum (solid black)
and its valley (dashed blue) and spin (dashed red) components
at Ωeff > 1=Ts; 1=Tv with Ts ¼ 31.42 ns, Tv ¼ 3.14 ns, and
ΩSO=2π ¼ 7 GHz. (a) ΩL=2π ¼ 3.5 GHz (ΩL < ΩSO), and (b)
ΩL=2π ¼ 15 GHz (ΩL > ΩSO). Faraday rotation is assumed
equally sensitive to valley and spin (L− ¼ 0).

FIG. 2 (color online). Spin noise power spectrum at different
values of the external in-plane magnetic field (along x) for Tv ≪
Ts and (a) 1=Tv ≲ ΩSO (ΩSO=2π ¼ 480 GHz) and (b) 1=Tv >
ΩSO (ΩSO=2π ¼ 48 GHz). Values of parameters used are g factor
g ¼ 2, Ts ¼ 2 ns, Tv ¼ 1 ps.
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fields and its width will depend on the spin-orbit splitting
and intervalley scattering rate. A moderate magnetic field
∼0.1–1 T is sufficient to strongly broaden the spin noise
peak centered at zero frequency. If spin relaxation time is
longer than 1 ns, this effect should be observable even
without resorting to more complex high-bandwidth
spectroscopy.

We thank S. A. Crooker and Luyi Yang for useful
discussions. Work at LANL was carried out under the
auspices of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-
06NA25396.

[1] For a recent review see, for example, T. O. Wehling, A. M.
Black-Schaffer, and A. V. Balatsky, arXiv:1405.5774v1
[Adv. Phys. (to be published)].

[2] C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett.
102, 195505 (2009); N. Alem, R. Erni, C. Kisielowski,
M. D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80,
155425 (2009).

[3] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl.
Acad. Sci. U.S.A. 102, 10451 (2005); K. F. Mak, C. Lee, J.
Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805
(2010); A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y.
Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271
(2010).

[4] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and
M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005); T. Cao, J. Feng, J. Shi, Q. Niu, and E. Wang, Nat.
Commun. 3, 887 (2012).

[6] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat.
Nanotechnol. 7, 490 (2012).

[7] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz,
and J. Shan, Nat. Mater. 12 207 (2013); H. Shi, R. Yan,
S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing,
and L. Huang, ACS Nano 7, 1072 (2013); D. Lagarde,
L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H.
Tan, and B. Urbaszek, Phys. Rev. Lett. 112, 047401 (2014).

[8] For recent reviews, see V. S. Zapasskii, Adv. Opt. Photonics
5, 131 (2013); G. M. Müller, M. Oestreich, M. Römer, and
J. Hübner, Physica (Amsterdam) 43E, 569 (2010).

[9] S. A. Crooker, L. Cheng, and D. L. Smith, Phys. Rev. B 79,
035208 (2009); M. Oestreich, M. Romer, R. J. Haug, and
D. Hägele, Phys. Rev. Lett. 95, 216603 (2005).

[10] G. M. Müller, M. Römer, D. Schuh, W. Wegscheider,
J. Hübner, and M. Oestreich, Phys. Rev. Lett. 101,
206601 (2008).

[11] S. V. Poltavtsev, I. I. Ryzhov, M. M. Glazov, G. G. Kozlov,
V. S. Zapasskii, and A. V. Kav, Phys. Rev. B 89, 081304(R)
(2014).

[12] S. A. Crooker, J. Brandt, C. Sandfort, A. Greilich, D. R.
Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Phys. Rev.
Lett. 104, 036601 (2010).

[13] R. Dahbashi, J. Hübner, F. Berski, K. Pierz, and
M. Oestreich, Phys. Rev. Lett. 112, 156601 (2014).

[14] F. Berski, H. Kuhn, J. G. Lonnemann, J. Hübner, and
M. Oestreich, Phys. Rev. Lett. 111, 186602 (2013).

[15] W.-K. Tse and A. H. MacDonald, Phys. Rev. B 84, 205327
(2011).

[16] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[17] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.046602 for a deri-
vation of Eqs. (3) and (4) and detailed expressions of the
spin noise power with its limiting behavior for slow and fast
intervalley relaxation rates.

[18] R.Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer, Berlin, 2003).

[19] The renormalized g factor has also been recently discussed
in A. Kormányos, V. Zólyomi, N. D. Drummond, and G.
Burkard, Phys. Rev. X 4, 011034 (2014).

[20] F. Li, Y. V. Pershin, V. A. Slipko, and N. A. Sinitsyn, Phys.
Rev. Lett. 111, 067201 (2013).

[21] The small spin-orbit coupling corrections ∼λ=Δ to the spin
and valley relaxation times are neglected in our phenom-
enological relaxation time approximation. We expect that
such corrections change only the quantitative but not the
qualitative features we find.

[22] M. B. Lundeberg, R. Yang, J. Renard, and J. A. Folk, Phys.
Rev. Lett. 110, 156601 (2013); A. A. Kozikov, D. W.
Horsell, E. McCann, and V. I. Fal’ko, Phys. Rev. B 86,
045436 (2012).

[23] H. Ochoa and R. Roldán, Phys. Rev. B 87, 245421 (2013);
L. Wang and M.W. Wu, Phys. Lett. A 378, 1336 (2014).

[24] Possible correction from intervalley spin-flip scattering,
which requires the simultaneous breakdown of time-reversal
symmetry and large momentum transfer, is negligible
compared to intravalley spin relaxation.

[25] C. W. Gardiner, Handbook of Stochastic Methods for
Physics, Chemistry and the Natural Sciences (Springer,
Berlin, 2004).

[26] To separate the valley noise contribution from the back-
ground photon shot noise, one can measure the shot noise
spectrum in the absence of the sample.

PRL 113, 046602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
25 JULY 2014

046602-5

http://arXiv.org/abs/1405.5774v1
http://arXiv.org/abs/1405.5774v1
http://dx.doi.org/10.1103/PhysRevLett.102.195505
http://dx.doi.org/10.1103/PhysRevLett.102.195505
http://dx.doi.org/10.1103/PhysRevB.80.155425
http://dx.doi.org/10.1103/PhysRevB.80.155425
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1038/ncomms1882
http://dx.doi.org/10.1038/ncomms1882
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nmat3505
http://dx.doi.org/10.1021/nn303973r
http://dx.doi.org/10.1103/PhysRevLett.112.047401
http://dx.doi.org/10.1364/AOP.5.000131
http://dx.doi.org/10.1364/AOP.5.000131
http://dx.doi.org/10.1016/j.physe.2010.08.010
http://dx.doi.org/10.1103/PhysRevB.79.035208
http://dx.doi.org/10.1103/PhysRevB.79.035208
http://dx.doi.org/10.1103/PhysRevLett.95.216603
http://dx.doi.org/10.1103/PhysRevLett.101.206601
http://dx.doi.org/10.1103/PhysRevLett.101.206601
http://dx.doi.org/10.1103/PhysRevB.89.081304
http://dx.doi.org/10.1103/PhysRevB.89.081304
http://dx.doi.org/10.1103/PhysRevLett.104.036601
http://dx.doi.org/10.1103/PhysRevLett.104.036601
http://dx.doi.org/10.1103/PhysRevLett.112.156601
http://dx.doi.org/10.1103/PhysRevLett.111.186602
http://dx.doi.org/10.1103/PhysRevB.84.205327
http://dx.doi.org/10.1103/PhysRevB.84.205327
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.046602
http://dx.doi.org/10.1103/PhysRevX.4.011034
http://dx.doi.org/10.1103/PhysRevLett.111.067201
http://dx.doi.org/10.1103/PhysRevLett.111.067201
http://dx.doi.org/10.1103/PhysRevLett.110.156601
http://dx.doi.org/10.1103/PhysRevLett.110.156601
http://dx.doi.org/10.1103/PhysRevB.86.045436
http://dx.doi.org/10.1103/PhysRevB.86.045436
http://dx.doi.org/10.1103/PhysRevB.87.245421
http://dx.doi.org/10.1016/j.physleta.2014.03.026

