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The interplay of massive electrons with spin-orbit coupling in bulk graphene results in a spin-valley
dependent gap. Thus, a barrier with such properties can act as a filter, transmitting only opposite spins from
opposite valleys. In this Letter we show that a strain induced pseudomagnetic field in such a barrier will
enforce opposite cyclotron trajectories for the filtered valleys, leading to their spatial separation. Since spin
is coupled to the valley in the filtered states, this also leads to spin separation, demonstrating a spin-valley
filtering effect. The filtering behavior is found to be controllable by electrical gating as well as by strain.

DOI: 10.1103/PhysRevLett.113.046601 PACS numbers: 72.25.-b, 72.80.Vp, 85.75.-d

Graphene is considered a promising material for future
spintronic applications, in part due to its long spin
relaxation length [1–3]. Furthermore, owing to its band
structure with two inequivalent valleys K and K0, it has
revived the field of valleytronics [4,5]. The low energy
excitations in the two valleys behave as Dirac-Weyl
particles, which is most famously manifested in the
presence of a magnetic field, in which Landau levels scale
as

ffiffiffiffi
B

p
, with a unique level at zero energy [5,6]. Besides, it

is known that straining graphene causes time-reversal
invariant gauge fields to appear, i.e., an effective magnetic
field with opposite signs in opposite valleys, providing a
tool for manipulating the valley degree of freedom [5].
Recent experiments demonstrated large values of this
pseudomagnetic field, which could hardly be matched in
practical applications by real magnetic fields [7].
In this Letter we study the transmission through a thin

1D graphene barrier with artificially induced mass and
spin-orbit coupling (SOC), in the presence of a pseudo-
magnetic field using the continuum approach. Our moti-
vation for studying such a structure is twofold. In part it is
due to a shift to a new paradigm in 2D materials research,
whereby their properties are custom tailored according to
specific needs by stacking different 2D crystals on top of
each other. These are the so-called van der Waals hetero-
structures [8]. More importantly, and in the light of this
paradigm, recent theoretical and experimental work sug-
gests that mass and SOC, which are vanishing in intrinsic
graphene, could be induced with appropriate substrates
and/or adatom deposition [9–19]. The studied device is
found to behave as a spin-valley filter, thus lying in the
intersection of the fields of spintronics and valleytronics.
In the continuum approach the carrier mass is captured

by a staggered potential termΔ, while SOC is captured by a
masslike term ΔSO. The presence of both will result in a
competition to open topologically distinct gaps [20]. This
competition reflects on the gap size given by 2jsτΔSO þ Δj,

where s ¼ þ1= − 1 labels the spin ↑=↓ and τ ¼ þ1= − 1
labels the valley K=K0 degrees of freedom [21]. Thus, for
different spins and valleys different gaps can arise. In order
to get some insight into the problem, we first study
transmission through a barrier with a real magnetic field.
Regardless of the magnetic field, whenever ΔSO ≠ 0 and
Δ ≠ 0, there is an energy range where sτ ¼ þ1 states are
suppressed, while sτ ¼ −1 states are not. In other words
only one spin from one valley and the opposite spin from
the opposite valley are transmitted. The main effect of the
magnetic field is to impose restrictions on incident angles
over which the transmission can occur. This is caused by
the cyclotron orbits, which are the same for all spins and
valleys.
We subsequently apply the pseudomagnetic field, which

leads to the reversal of the effective field, and the effective
cyclotron orbits in one of the valleys. This provides the
benefit of spatially separating the transmitted states accord-
ing to their valley degree of freedom, and accordingly their
spin degree of freedom as well. Thus, a combined spin-
valley filter can be obtained. Furthermore, we show that
chemical potential and strain can act as a switch, rendering
control over the filtering behavior. Filtering in graphene
devices was studied before [22–29]; however, the mecha-
nism proposed in this Letter is novel, and previously
unexplored. Practical implications are discussed at the
end of the Letter.
Our starting point is the Dirac-Weyl equation, in the

presence of mass, SOC, and a magnetic field perpendicular
to the sheet Bz. In this case we choose the Landau gauge
A ¼ ð0; AyÞ, and the Dirac-Weyl Hamiltonian reads

H ¼ ℏvF

�
τkxσx þ

�
ky þ

e
ℏ
Ay

�
σy

�
þ sτΔSOσz þ Δσz;

ð1Þ
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where vF is the Fermi velocity, and σz is a Pauli matrix
operating in the sublattice subspace.
We use the parameter τB, such that Bz ¼ τBB, to capture

the valley-dependent nature of the pseudomagnetic field.
Setting τB ¼ þ1 models the influence of the real magnetic
field, while τB ¼ �τ models the two types of the pseudo-
magnetic field. The (pseudo)magnetic field, mass, and SOC
exist only in the barrier of width W. The vector potential is
therefore given by

Ay ¼

8>><
>>:

0; x < 0

τBBx; 0 ≤ x ≤ W

τBBW; x > W:

ð2Þ

In the chosen Landau gauge ky is a good quantum
number and the solutions have the form Ψðx; yÞ ¼
exp ðikyyÞðψAðxÞ;ψBðxÞÞT . Introducing ℏvFϵ ¼ E, and
ℏvFδ ¼ sτΔSO þ Δ, and decoupling the system, in the
barrier one obtains

�
∂2
x∓ττB

1

l2B
−
�
ky þ τB

x
l2B

�
2

þ ϵ2 − δ2
�
ψA=B ¼ 0; ð3Þ

where lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
. Using the transformation

z ¼ ffiffiffi
2

p ðkylB þ τBx=lBÞ, the solutions are expressed in
terms of the parabolic cylinder functions DνðzÞ (see the
Supplemental Material [30] for a detailed derivation), and
read

ψ II ¼ C1

�
DνAðzÞ
gDνBðzÞ

�
þ C2

�
DνAð−zÞ

−gDνBð−zÞ
�
; ð4Þ

where νA=B ¼ ðϵ2 − δ2Þl2B=2∓ττB=2 − 1=2, and

g ¼ i

� ffiffiffi
2

p

ðϵþ ττBδÞlB

�ττB
: ð5Þ

On the other hand, the incident wave function is

ψ I ¼ eikxx
�

1

τeiτϕ

�
þ re−ikxx

�
1

τeiτðπ−ϕÞ

�
; ð6Þ

while the solution in the third region reads

ψ III ¼ t

ffiffiffiffiffi
kx
k0x

s
eik

0
xx

�
1

τeiτθ

�
: ð7Þ

Here, ϕ ¼ arctan ky=kx and θ ¼ arctan k0y=k0x denote the
energy propagation directions before and after the barrier,
where ky ¼ qyð0Þ and k0y ¼ qyðWÞ, while qyðxÞ ¼
ϵ sinϕþ eAyðxÞ=ℏ is the effective transverse momentum.
The longitudinal momenta before and after the barrier
are given by kx ¼ ϵ cosϕ and k0x ¼ ϵ cos θ. Note that all

these expressions are valid for the valence band as well (see
the Supplemental Material [30]). Matching the wave
functions at the interfaces gives a system of equations,
whose solution yields the transmission amplitude t

t ¼ 2gτ cosϕðGþ
AG

−
B þ G−

AG
þ
B Þ

eik
0
xWf

ffiffiffiffiffi
k0x
kx

s
; ð8Þ

where

f ¼ g2ðFþ
BG

−
B − F−

BG
þ
B Þ þ eiτðθ−ϕÞðFþ

AG
−
A − F−

AG
þ
A Þ

þ gτeiτθðF−
BG

þ
A þ Fþ

BG
−
AÞ þ gτe−iτϕðFþ

AG
−
B þ F−

AG
þ
B Þ:
ð9Þ

Here the coefficients F� and G� are given by

F�
A=B ¼ DνA=B ½�

ffiffiffi
2

p
kylB�; ð10Þ

G�
A=B ¼ DνA=B

�
�

ffiffiffi
2

p �
kylB þ τB

W
lB

��
: ð11Þ

In Fig. 1 we look at the behavior of transmission
coefficients (T ¼ jtj2) in detail for a real magnetic field
(τB ¼ þ1). Here we show contour plots of, from top to
bottom, T↑K , T↑K0 , T↓K, and T↓K0 , as a function of incident
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FIG. 1 (color online). Contour plots of transmission coefficient
versus energy and incident angle, for all spin and valley flavors.
ΔSO equals 30 meV, whileΔ is varied: (a)Δ ¼ 0, (b)Δ ¼ 15, and
(c) Δ ¼ 30 meV. The width of the barrier is taken to be
W ¼ 100 nm, and B ¼ 0.2 T.
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energy and angle. We adopt a set of parameters that
illustrates our main points clearly: ΔSO ¼ 30 meV,
W ¼ 100 nm, and B ¼ 0.2 T, whereas Δ varies from 0
in (a) to Δ ¼ 15 meV in (b) and Δ ¼ 30 meV in (c).
A common feature of all the cases depicted in Fig. 1 is

that transmission is forbidden outside the transmission
window delineated by the solid black line. This is because
the magnetic field enforces cyclotron motion, resulting in
asymmetric transmission curves with respect to the inci-
dence angle [35,36]. This boundary is obtained by requir-
ing that the longitudinal momentum after the barrier
becomes imaginary, so that only evanescent waves can
exit, and therefore no transmission can occur. The longi-
tudinal momentum in the third region is given by
k02x ¼ ϵ2 − qyðWÞ2. Hence, this window is determined by
a critical energy, below (above) which the transmission is
not possible

ϵc=vcr1 ¼ �γ

1∓τB sinϕ
; ð12Þ

where γ ¼ W=l2B, and c (v) denotes the conduction
(valence) band. The window depends on W;B, and ϕ;
i.e., it is not a function of ΔSO;Δ; s, or τ at all, as can be
observed in Fig. 1. However, the transmission within this
window obviously depends on ΔSO;Δ; s, and τ.
As already mentioned, in the presence of mass and SOC,

the bulk band gap is given by 2jsτΔSO þ Δj. Therefore,
when both parameters are present, the sτ ¼ þ1 states
experience a larger gap than the sτ ¼ −1 states. To see
how this might reflect on the transmission through a barrier
we need to examine the behavior of the quasiclassical

momentum within the barrier qxðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − δ2 − qyðxÞ2

q
(see the Supplemental Material [30]). Therefore, through
the appearance of δ, the quasiclassical momentum depends
on ΔSO;Δ; s, and τ. More specifically, when both Δ and
ΔSO are nonzero, whether classically forbidden regions
inside the barrier will appear depends crucially on the
product sτ, which is a clear manifestation of the bulk band
gap. The existence of forbidden regions in the barrier does
not necessarily imply that the momentum after the barrier is
imaginary. To see this, one can express the critical energy
below (above) which the former happens

ϵc=vcr2 ¼�max

��τBγ sinϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2þδ2cos2ϕ

p
cos2ϕ

;
jδj

cosϕ

�
: ð13Þ

This critical boundary is drawn in dashed black lines in
Fig. 1, and it coincides with the transmission window
[Eq. (12)] only when the bulk band gap is closed.
Therefore, in between ϵccr1 and ϵ

c
cr2 transmission is possible,

but only by tunneling through the forbidden region
(regions) in the barrier, and thus perfect transmission
cannot occur. Above the ϵccr2 boundary, however, there is
no attenuation within the barrier, and the resulting

transmission is determined by the interference of electron
waves. It is important to point out that below the minimum
of ϵccr2, which coincides with the bottom of the conduction
band, the transmission is strongly suppressed.
One issue requires clarification. For the case Δ ¼ 0,

shown in Fig. 1(a), ϵccr2 is the same for all spin and valley
flavors. However, the transmissions for spin up and spin
down are obviously different. This discrepancy arises due
to the factor g, appearing in the transmission amplitude,
Eq. (8). This factor is in turn just a reflection of the form of
the Landau level (LL) eigenstates. In fact one can easily
show that the solution given by Eq. (4) reduces to the LL
eigenstates once the incident energy is equal to a particular
LL (see the Supplemental Material [30]).
It is known that inversion symmetry breaking can lead to

the appearance of magnetic moments coupled with the
valley degree of freedom, which in turn influence the LLs
[32]. Similar moments arise when SOC is present as well,
albeit coupled with the spin degree of freedom (see the
Supplemental Material [30]). It is these moments that cause
spin-distinguished transmission found in Fig. 1(a). A
similar behavior occurs when only Δ is nonzero, but with
valley differentiation instead. In fact, we have found that all
of the contour plots obey the symmetry ΔSO↔Δ, s↔τ.
This stems from the fact that the band gap and the magnetic
moments display the same symmetry as well. We stress,
however, that this behavior has little to no impact on the
effect we describe here, and will be studied in detail
elsewhere.
Introducing Δ will cause shrinking (enlarging) of the

evanescent region for sτ ¼ −1 (sτ ¼ þ1) states, Fig. 1(b).
This will lead to the appearance of an energy range where
only sτ ¼ −1 states are not suppressed. Furthermore, note
that these states also display lower fringe contrast. This is
because the barrier is effectively reduced for these states.
Finally, for the case ΔSO ¼ Δ, depicted in column (c), sτ ¼
þ1 states are even further suppressed. On the other hand,
for sτ ¼ −1 the barrier vanishes, as the effective dispersion
returns to a Dirac cone. These states are influenced only by
the magnetic field [35,36], which can also be inferred from
the fact that now ϵc=vcr1 ¼ ϵc=vcr2 . This means that they
experience no reflection at the walls of the barrier and
as a consequence there are no resonances.
Therefore, as long as ΔSO ≠ 0 and Δ ≠ 0, in a particular

energy range only spin up states from the K valley and spin
down states from the K0 valley are transmitted. Introducing
a pseudomagnetic field, by for instance setting τB ¼ þτ,
means that the effective magnetic field in K0 valley flips.
This in turn flips the transmission window in this valley to
ϵccr1K0 ¼ γ=ð1þ sinϕÞ. Thus, spatial separation of the states
from each valley will occur, which is an obvious conse-
quence of their opposite cyclotron trajectories.
Furthermore, since spin is coupled to the valley degree
of freedom in the transmitted states, this will inevitably lead
to spin separation as well.
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Additionally, it follows from Eq. (8) that the transmission
coefficient for−ϕ,−s,−τ equals the one for ϕ, s, τ, which is
a manifestation of time-reversal symmetry [37]. In other
words, the transmission for spins in the valley where the
effective magnetic field is reversed will just be a mirror
image of the transmission from the opposite valley and
opposite spin, for which the effective magnetic field stayed
the same. This is displayed in Fig. 2(a), for the same set of
parameters as in Fig. 1(c), andE ¼ 20 meV,where the spin-
valley filtering behavior is apparent. On the other hand, by
choosing the opposite strain, τB ¼ −τ, the effective mag-
netic field will be flipped in both valleys. This will lead to
flipping of the filtered spin and valley, as depicted in
Fig. 2(b), since both transmission windows flip [see
Eq. (12)]. In other words strain could act as a switch [38].
Furthermore, the switching can also be achieved by

controlling the chemical potential instead of strain. To see
this, note that the transmission window for a given spin and
valley in the valence band ϵvcr1 is a mirror reverse of the one
in the conduction band ϵccr1, Eq. (12). This is a consequence
of different cyclotron trajectories for electrons and holes,
and the same symmetry is obeyed by the semiclassical
critical boundary, given in Eq. (13). Moreover, since
Tðϵ;τB¼þτÞ¼Tð−ϵ;τB¼−τÞ holds, Figs. 2(a) and 2(b)
also correspond to τB ¼ −τ, E ¼ −20 meV and τB ¼ τ,
E ¼ −20 meV, respectively. The effect of controlling the
chemical potential on spin filtering is depicted in Fig. 2(c),
where the outlines of the transmission windows can be
clearly seen. Note that the same plot holds for TK0 − TK,
albeit with opposite filtering in the overlap region of both
transmission windows. Therefore, the control of the trans-
mitted spin and valley outside of the transmissionless gap
½−γ=2; γ=2� could be established by means of electrical
gating. Additionally, there exist optimal energy ranges for

filtering in the valence and conduction band, ½−γ;−γ=2�
and ½γ=2; γ�, respectively, where the transmitted states do
not overlap (see the Supplemental Material [30]).
Finally, we include some practical considerations. First

note that only minor straining would be required for
inducing a pseudomagnetic field of 0.2 T in a 100 nm
wide barrier, given the strain pattern described in Ref. [39].
Since ΔSO and Δ equal zero in graphene, these two
parameters would have to be induced artificially in the
barrier, a feat possible because bulk electrons are fully
exposed on the graphene surface. Hexagonal boron nitride
(hBN) has an intrinsically broken inversion symmetry, and
forms a generally higher quality electronic heterostructure
with graphene as opposed to other substrates [40], man-
ifested in reduced charge impurities, ultraflatness, and high
electron mobility. It also has a minuscule lattice mismatch
with respect to graphene [9], which causes a moiré pattern,
resulting in a Hofstadter fractal spectrum [41,42]. While the
emerging superlattice potential was suggested to induce
insulating puddles with opposing masses [10,43], it was
also argued that an average gap should be opened never-
theless [11]. Recently, a gap of about 30 meV in a
graphene/hBN composite, consistent with inversion sym-
metry breaking, was detected [13,44]. The average gap
appears because the area of the favored commensurate
stacking expands by stretching of the graphene lattice, once
the two layers are well aligned [12,44,45].
On the other hand, it was suggested that engineering

SOC in graphene can be achieved by adatoms or substrates
[14–16,18]. This was indeed experimentally verified
recently, where SOC as high as 17 meV was observed
[17,19]. Since SOC in Eq. (1) commutes with out-of-plane
spin, increasing it will not affect scattering of this spin
component. However, inversion symmetry breaking will
cause new extrinsic spin relaxation mechanisms [1,46]. The
use of hBN as a substrate would prove beneficial here, since
it was shown that the resulting heterostructure supports
very long spin relaxation lengths [3]. Moreover, we argue
that scattering processes could also be reasonably reduced
by manipulating barrier length and/or strain patterns.
In conclusion, we proposed a device that enables spatial

separation of opposite spin-valley pairs. The proposed spin-
valley filter consists of a strained barrier with artificially
engineered electron mass and SOC. Nanoribbon geometry
could provide the practical testing ground for this effect,with
the barrier formed perpendicular to the ribbon. If Δ > ΔSO,
the devicewould be in the topologically trivial phase, and the
polarized current could in principle be detected by leads
attached to the edges of the ribbon. On the other hand, if
ΔSO > Δ, edge states could become anuisance.However the
device could still operate in the domain of electron optics. In
otherwords, the effect would be observable for a sufficiently
collimated beam injected far from the edges. Collimation
could also be achieved bymeans of a smoothKlein barrier in
front of the studied device [47].
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FIG. 2 (color online). Polar plots of the transmission coefficient
versus the incident angle for various strains and energies. In
(a) τB ¼ �τ, E ¼ �20 meV give the same transmission, while in
(b) τB ¼ ∓τ, E ¼ �20 meV give the same transmission. All
other parameters are the same as in Fig. 1(c). The electric control
of the spin-valley filtering is clearly seen in (c), where the contour
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